Preview

Rational Pharmacotherapy in Cardiology

Advanced search

PROTHROMBOTIC POLYMORPHISMS AND LONG-TERM PROGNOSIS OF PATIENTS WITH STABLE ISCHEMIC HEART DISEASE

https://doi.org/10.20996/1819-6446-2011-7-4-409-425

Full Text:

Abstract

Aim. To estimate influence of thrombosis associated genetic factors on cardiovascular complications (CVC) occurrence in patients with stable ischemic heart disease (IHD) on the base of 5-year prospective survey. Material and methods. A total of 503 patients with the mean age of 59.4 years were enrolled into the study. The follow-up period was 5.4 years. Composite endpoint included the following cases of fatal and nonfatal CVC: death, acute coronary syndrome, ischemic stroke/transient ischemic attack, peripheral arterial thrombosis and revascularization of affected vascular system. We determined prevalence and prognostic value of mutations and polymorphisms in genes that encode blood clotting factors (factor V Leiden G1691A, prothrombin G20210A, ß-fibrinogen 455G> A), platelet GPIIIa receptor (C1565T) and enzymes involved in homocysteine metabolism (methylentetrahydrofolate reductase  (C667 T MTHFR) and A1298C, methionine synthase (MTR) A2756G, methionine synthase-reductase (MTRR) A66G and transcobalamin (TCN) C776G). Results. Overall incidence rate of vascular events made up 31.0%. MTHFR and TCN polymorphisms proved to be significant in regard to cardiovascular risk among all studied genetic indices. Carriage of at least C667 T one MTHFR polymorphic allele increased risk of CVC 1.64 times (95% confidence interval (CI) 1.2-2.3, p=0.003). Homozygous carriage of MTHFR 1298 AА and TCN 776 СС “wild” genotypes increased risk of CVC 1.63 times (95% CI 1.2-2.3, р=0.006) and 1.37 times (95% CI 1.001-1.89, р=0.04), respectively. Such genetic variants as MTHFR C667 T/СТ and 1298 AА impacted prognosis only given concomitant decrease in plasma folate level, which was observed in 56.1% of the patients. Conclusion. It can be recommended to test the presence of MTHFR C667 T, MTHFR 1298 AА and TCN 776 СС, and to simultaneously assess folate level in IHD patients in order to clarify risk of unfavorable cardiovascular events.

About the Authors

A. L. Komarov
Russian Cardiology Research and Production Complex
Russian Federation
PhD., MD, Senior research associate


O. O. Shahmatova
Russian Cardiology Research and Production Complex
Russian Federation
PhD, MD, Junior research associate


D. V. Rebrikov
«DNA-Technology» Research and Production Company General Genetics Institute named after N.I. Vavilov
Russian Federation

PhD, R&D Director of “DNA-T echnology” Research and Production Company; Head of “Genetic Polymorphism” center of General Genetics Institute named after Vavilov N.I.



D. Yu. Trophimov
«DNA-Technology» Research and Production Company
Russian Federation
PhD, CEO


T. I. Kotkina
Russian Cardiology Research and Production Complex
Russian Federation
MD, Head of the clinical-diagnostic laboratory


T. A. Ilyushenko
Russian Cardiology Research and Production Complex
Russian Federation
MD, Postgraduate student


A. D. Deev
State Research Center for Preventive Medicine
Russian Federation
PhD, Head of the biostatistics laboratory


E. P. Panchenko
Russian Cardiology Research and Production Complex
Russian Federation

PhD, MD, Professor , Head of the atherothrombosis clinical problems laboratory



References

1. European guidelines on cardiovascular disease prevention in clinical practice. European Journal of Cardiovascular prevention and Rehabilitation 2007; 14: E1-40.

2. Lotta LA, Peyvandi F. Addressing the complexity of cardiovascular disease by design. Lancet 2011;377:356-358.

3. Iakoubova OA, Tong CH, Rowland CM et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol 2008;51(4):435-443.

4. Dahlback B. Inherited thrombophilia: resistance to activated protein C as a pathogenic factor of venous thromboembolism. Blood 1995;85:607-614.

5. Rosendaal FR. Venous thrombosis: a multicausal disease. Lancet 1999;353:1167-1173.

6. Emmerich J, Rosendaal FR, Cattaneo M, et al. Combined effect of factor V Leiden and pro-thrombin 20210A on the risk of venous thromboembolism: pooled analysis of 8 case-control studies including 2310 cases and 3204 controls: Study Group for Pooled-Analysis in Venous Thromboembolism. Thromb Haemost 2001;86:809-816.

7. Rosendaal FR, Doggen CJ, Zivelin A, et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost 1998;79:706-708.

8. Ridker PM, Hennekens CH, Lindpaintner K, et al. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995;332:912-917.

9. Juul K, Tybjaerg-Hansen A, Steffensen R, et al. Factor V Leiden: The Copenhagen City Heart Study and 2 metaanalyses. Blood 2002;100:3-10.

10. Kim RJ, Becker RC. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a meta-analysis of published studies. Am Heart J 2003;146(6):948-957.

11. Ye Z., Liu E., Higgins J. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66.155 cases and 91.307 controls. The Lancet 2006; 367:651-658.

12. Wierzbicki AS. Homocysteine and cardiovascular disease: a review of the evidence. Diab Vasc Dis Res 2007;4(2):143-150.

13. Di Minno MN, Tremoli E, Coppola A, et al. Homocysteine and arterial thrombosis: Challenge and opportunity. Thromb Haemost 2010;103(5):942-961.

14. Dahlback B, Hildebrand B. Inherited resistance to activated protein C is corrected by anticoagulant cofactor activity found to be a property of factor V. Proc Natl Acad Sci USA 1994;91:1396-1400.

15. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994; 369:64-67.

16. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3_-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996;88:3698-3703.

17. Van’t Hooft FM, von Bahr SJ, Silveira A. et al. Two common functional polymorphisms in the promoter region of the _-fibrinogen gene contribute to regulation of plasma fib-rinogen concentration. Arterioscler Thromb Vasc Biol. 1999;19:3063–3070.

18. Brown ET, Fuller GM. Detection of a complex that associates with the B_ fibrinogen G-455-A polymorphism. Blood. 1998;92:3286–3293.

19. T. Byzova, E. Plow. The PlA2 allele and cardiovascular disease: the pro33 and con. The Journal of Clinical Investigation, 2000;105(6); 697-698.

20. Bennett JS. Structural biology of glycoprotein IIb-IIIa. Trends Cardiovasc Med. 1996;16:31-36.

21. Frosst P., Blom H.J., Milos R. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111–113.

22. Laraqui A., Allami A., Carrié A. et al. Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol. 2006;61:51-61.

23. Kerkeni M., Addad F., Chauffert M. et al. Hyperhomocysteinaemia, methylenetetrahydrofolate reductase polymorphism and risk of coronary artery disease. Ann Clin Biochem. 2006;43:200-206.

24. Huh H.J., Chi H.S., Shim E.H. et al. Gene-nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population. Thromb Res. 2006;117:501-506.

25. Guéant-Rodriguez R.M., Juilliére Y., Candito M. et al. Association of MTRRA66G poly-morphism (but not of MTHFR C677T and A1298C, MTRA2756G, TCN C776G) with homocysteine and coronary artery disease in the French population. Thromb Haemost. 2005;94:510-515.

26. Brandalize A.P.C., Bandinelli E., Borba J.B. et al. Polymorphisms in genes MTHFR, MTR and MTRR are not risk factors for cleft lip/palate in South Brazil. Braz J Med Biol Res 2007;40:787-791.

27. Doolin M.T., Bardaux S., McDonneli M. et al. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet 2002;71:1222-1226.

28. Hubner R.A., Muir K.R., Liu J.F. et al. Folate Metabolism Polymorphisms influence risk of colorectal adenoma reccurence. Cancer Epidemiol Biomarkers Prev 2006;15:1607-1612.

29. Alessio A.C.M., Höehr N.F., Siqueira L.H. et al. Polymorphism C776G in the transcobalamin II gene and homocysteine, folate and vitamin B12 concentrations. Association with MTHFR C677T and A1298C and MTRR A66G polymorphisms in healthy children. Thrombosis research 2007;119:571-577.

30. Namour F., Olivier J.L., Abdelmouttaleb I. et al. Transcobalamin codon 259 polymorphism in HT-29 and Caco-2 cells and in Caucasians: relation to transcobalamin and homocysteine concentration in blood. Blood 2001;97:1092-1098.

31. Egeberg O. Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh. 1965;13:516-530.

32. Griffin JH, Evatt B, Zimmerman TS, Kleiss AJ, Wideman C. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68:1370- 1373.

33. Comp PC, Esmon CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N Engl J Med. 1984;311:1525-1528.

34. Comp PC, Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest. 1984;74:2082-2088.

35. Schwarz HP, Fischer M, Hopmeier P, Batard MA, Griffin JH. Plasma protein S deficiency in familial thrombotic disease. Blood. 1984;64:1297-1300.

36. Nicolaides AN, Breddin HK, Carpenter P, et al. Thrombophilia and venous thromboembolism. International consensus statement. Guidelines according to scientific evidence. Int Angiol. 2005;24(1):1-26.

37. Griffin JH, Evatt B, Wideman C, Fernandez JA. Anticoagulant protein C pathway defective in majority of thrombophilic patients. Blood. 1993;82:1989-1993.

38. Koster T, Rosendaal FR, de Ronde H. et al. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet. 1993;342:1503-1506.

39. Svensson PJ, Dahlback B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med. 1994;330:517-522.

40. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010 21;122(25):584-636.

41. Segers K, Dahlback B, Nicolaes GA. Coagulation factor V and thrombophilia: background and mechanisms. Thromb Haemost. 2007;98:530-542.

42. Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. Lancet. 1995;346:1133-1134.

43. Nakai K., Itoh C., Nakai K. et al. Correlation between C677T MTHFR gene polymorphism, plasma homocysteine levels and the incidence of CAD. Am J Cardiovasc Drugs 2001;1:353-361.

44. Kim R.J., Becker R.C. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a meta-analysis of published studies. Am Heart J. 2003;146:948-957.

45. Cronin S., Furie K.L., Kelly P.J. Dose-related association of MTHFR 677T allele with risk of ischemic stroke: evidence from a cumulative meta-analysis. Stroke 2005;36:1581-1587.

46. Botto N., Andreassi M.G., Rizza A. et al. C677T polymorphism of the methylenetetrahydrofolate reductase gene is a risk factor of adverse events after coronary revascularization. Int J Cardiol. 2004;96:341-345.

47. Kosokabe T., Okumura K., Sone T. Et al. Relation of a Common Methylenetetrahydrofolate Reductase Mutation and plasma homocysteine with intimal hyperplasia after coronary stenting. Circulation. 2001;103:2048-2054.

48. Kölling K., Ndrepepa G., Koch W. et al. Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms, plasma homocysteine, folate, and vitamin B12 levels and the extent of coronary artery disease. Am J Cardiol. 2004 15;93:1201-1206.

49. Klerk M., Verhoef P., Clarke R. et al. MTHFR 677C-T Polymorphism and risk of coronary heart disease. JAMA. 2002;288:2023-2031.

50. Mendonça M.I., Dos Reis R.P., Freitas A.I. et al. Gene-gene interaction affects coronary artery disease risk. Rev Port Cardiol. 2009;28:397-415.

51. Frosst P., Blom H.J., Milos R. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111–113.

52. Albert CM, Cook NR, Gaziano JM et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk of cardiovascular disease: a randomized trial. JAMA 2008;299(17):2027-2036.

53. Shahmatova O.O, Komarov A.L., Rebrikov D.V. et al. Factors determining homocysteine level in Russian patients with stable ischemic heart disease. Cardio-vascular therapy and prevention, 2010; 4:49-58. (In Russian). / Шахматова О.О., Комаров А.Л., Ребри-ков Д.В. и соавт. Факторы, определяющие уровень гомоцистеина, в когорте рос-сийских пациентов со стабильной ишемической болезнью сердца. Кардиоваску-лярная терапия и профилактика, 2010; 4:49-58.

54. Durand P., Prost M., Loreau N. et al. Impaired homocysteine metabolism and atherothrombotic disease. Lab Invest 2001;81:645–672.

55. Guttormsen A.B., Ueland P.M., Svarstad E., Refsum H. Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure. Kidney Int 1997;52:495-502.

56. Bostom A., Brosnan J.T., Hall B. et al. Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis 1995;116:59-62.

57. Stehouwer C.D., Gall M.A., Hougaard P. et al. Plasma homocysteine concentration predicts mortality in non-insulin diabetic patients with and without albuminuria. Kidney Int 1999;55:308-314.

58. Moat S.J., Doshi S.N., Lang D. et al. Treatment of coronary heart disease with folic acid: Is there a future? Am J Physiol Heart Circ Physiol 2004;287:1-7.

59. Chen K., Song L., Jin M.J. et al. Association between genetic polymorphisms in folate metabolic enzyme genes and colorectal cancer: a nested case-control study. Zhonghua Zhong Liu Za Zhi. 2006;28:429-432.

60. Hazra A., Wu K., Kraft P. et al. Twenty-four non-synonymous polymorphisms in the one-carbon metabolic pathway and risk of colorectal adenoma in the Nurses' Health Study. Carcinogenesis 2007;28:1510-1519.

61. Morrison HI, Schaubel D, Desmeules M, Wigle DT. Serum folate and risk of fatal coronary heart disease. JAMA 1996;275:1893-1896.

62. Rimm EB, Willett WC, Hu FB. et al. Folate and vitamin B6 fromdiet and supplements in relation to risk of coronary heart disease among women. JAMA 1998;279:359-364.

63. He K, Merchant A, Rimm EB et al. Folate, vitamin B6, and B12 intakes in relation to risk of stroke among men. Stroke 2004;35:169-174.

64. Spirichev V.B. Theoretic and practical items of contemporary vitaminology. Nutrition questions 2005;74:32-40. (In Russian). / Спиричев В.Б. Теоретические и практические аспекты современной витаминологии. Вопросы питания 2005;74:32-40.

65. Jacques P.F., Selhub J., Bostom A.G. et al. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999;34:1449–1454.

66. Rader J.I. Folic acid fortification, folate status and plasma homocysteine. J Nutr 2002;132:2466–2470.

67. Bazzano L.A., Reynolds K., Holder K.N., He J. Effect of folic acid supplementation on risk of cardiovascular diseases: A meta-analysis of randomized controlled trials. JAMA 2006;296:2720-2726.

68. Wald D.S., Wald N.J., Morris J.K., Law M. Folic acid, homocysteine and cardiovascular disease: Judging causality in the face of inconclusive trial evidence. BMJ 2006;333:1114-1117.

69. P. Galan, E. Kesse-Guyot, S. Czernichow et al. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial. BMJ 2010;341:6273-6282.


For citation:


Komarov A.L., Shahmatova O.O., Rebrikov D.V., Trophimov D.Y., Kotkina T.I., Ilyushenko T.A., Deev A.D., Panchenko E.P. PROTHROMBOTIC POLYMORPHISMS AND LONG-TERM PROGNOSIS OF PATIENTS WITH STABLE ISCHEMIC HEART DISEASE. Rational Pharmacotherapy in Cardiology. 2011;7(4):409-425. (In Russ.) https://doi.org/10.20996/1819-6446-2011-7-4-409-425

Views: 307


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)