Preview

Rational Pharmacotherapy in Cardiology

Advanced search

GENETIC PREDICTORS OF IDIOPATHIC SICK SINUS SYNDROME

https://doi.org/10.20996/1819-6446-2012-8-6-804-809

Full Text:

Abstract

Published data demonstrating genetic determination of sick sinus syndrome is presented. The definition of this pathology is presented; the main symptoms are described, as well as genes that influence the development of idiopathic sick sinus syndrome, their polymorphisms and role in disorders of the cardiovascular system.

About the Authors

A. A. Chernova
Krasnoyarsk State Medical University named after Professor V.F . Voyno-Yasenetsky
Russian Federation


S. Yu. Nikulina
Krasnoyarsk State Medical University named after Professor V.F . Voyno-Yasenetsky
Russian Federation


S. S. Tret'yakova
Krasnoyarsk State Medical University named after Professor V.F . Voyno-Yasenetsky
Russian Federation


References

1. Burova N.N., Chireykin L.V., Medvedev M.M. Population-genetic analysis of patients with sick sinus syndrome. Vestnik Aritmologii 1999; (1):14–17. Russian (Бурова Н.Н., Чирейкин Л.В., Медведев М.М. Популяционно-генетический анализ у больных синдромом слабости синусового узла. Вестник аритмологии 1999; (1):14–17).

2. Snezhitskiy V.A. Sinus node dysfunction: issues of diagnosis and treatment. Meditsinskie Novosti 2003; (1): 22–26. Russian (Снежицкий В.А. Дисфункция синусового узла: вопросы диагностики и лечения. Медицинские Новости 2003; (1): 22–26).

3. Shul'man V.A., Nikulina S.Yu., Matyushin G.V. et al. Genealogy and genetics of cardiac arrhythmias. Krasnoyarsk: Sirius; 2005. Russian (Шульман В.А., Никулина С.Ю., Матюшин Г.В. и др. Генеалогия и генетика сердечных аритмий. Красноярск: Сириус; 2005).

4. Benson D.W., Wang D.W., Dyment M. et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003; 7(112): 1019–1028.

5. Epp T.A., Dixon I.M.C., Wang H.-Y. et al. Structural organization of the human cardiac alpha-myosin heavy chain gene (MYH6). Genomics 1993; 18: 505–509.

6. Matsuoka R., Yoshida M.C., Kanda N. et al. Human cardiac myosin heavy chain gene mapped within chromosome region 14q11.2-q13. Am J Med Genet 1989;32: 279–284.

7. Carniel. E., Taylor M.R.G., Sinagra G. et al. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 2005; 112: 54–59.

8. Niimura H., Patton K.K., McKenna W.J. et al. Sarcomere protein gene mutations in hypertrophic car-diomyopathy of the elderly. Circulation 2002; 105: 446–451.

9. Ching Y.-H., Ghosh T.K., Cross S.J. et al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nature Genet 2005; 37: 423–428.

10. Holm H., Gudbjartsson D.F., Sulem P. et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nature Genet 2011; 43: 316–320.

11. Herfst L.J, Rook M.B., Jongsma H.J. Trafficking and functional expression of cardiac Na+ channels. J Mol Cell Cardiol 2004; 2(36): 185–93.

12. Viswanathan P.C., Balser J.R. Inherited sodium channelopathies: a continuum of channel dysfunction. Trends Cardiovasc Med 2004; 1(14): 28–35.

13. Juang J.M., Huang S.K. Brugada syndrome — an under-recognized electrical disease in patients with sudden cardiac death. Cardiology 2004; 4(101): 157–169.

14. Vatta M., Dumaine R., Varghese G. et al. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet 2002; 3(11): 337–345.

15. Paulussen A.D., Gilissen R.A., Armstrong M. et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med (Berl) 2004; 3(82): 182–188.

16. Yang P., Kanki H., Drolet B. et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 16(105): 1943–1948.

17. Ackerman M.J., Siu B.L., Sturner W.Q. et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 2001; 18(286): 2264–2269.

18. Plant L.D., Bowers P.N., Liu Q. et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest 2006; 2(116): 430–435.

19. Schulze-Bahr E., Neu A., Friederich P. et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 2003; 111: 1537–1545.

20. Stieber J., Herrmann S., Feil S. et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. PNAS 2003; 100(25): 15235–40.

21. Harzheim D., Pfeiffer K. H., Fabritz L. et al. Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP. The EMBO Journal 2008; 27: 692–703.

22. Ueda K., Hirano Y., Higashiuesato Y. et al. Role of HCN4 channel in preventing ventricular arrhythmia. J Hum Genet 2009; 54: 115–121.

23. Milanesi R., Baruscotti M., Gnecchi-Ruscone T. et al. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. New Eng J Med 2006; 354: 151–157.

24. Nof E., Luria D., Brass D. et al. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation 2007; 116: 463–470.

25. Dupays L., Mazurais D., Rucker-Martin C. et al. Genomic organization and alternative transcripts of the human connexin40 gene. Gene 2003; 1(305): 79–90.

26. Kaba R.A., Coppen S.R., Dupont E. et al. Comparison of connexin 43, 40 and 45 expression patterns in the developing human and mouse hearts. Cell Commun Adhesion 2001;8: 339–343.

27. Simon A.M., Goodenough D.A., Paul D.L. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 1998; 5(8): 295–298.

28. Groenewegen W.A., Firouzi M., Bezzina C.R. et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res 2003; 92: 14–22.

29. Gollob M.H, Jones D.L, Krahn A.D. et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 2006; 25(354): 2677–2688.

30. Yang Y.Q., Zhang X.L., Wang X.H. et al. Connexin40 nonsense mutation in familial atrial fibrillation. Int J Mol Med 2010; 4(26): 605–610.

31. Yang Y.Q, Liu X., Zhang X.L. et al. Novel connexin40 missense mutations in patients with familial atrial fibrillation Europace 2010;10(12):1421–1427.

32. Wirka R.C., Gore S., Van Wagoner D.R. et al. A common connexin-40 gene promoter variant affects connexin-40 expression in human atria and is associated with atrial fibrillation. Circ Arrhythm Electrophysiol 2011; 1(4):87–93.

33. Gu H., Smith F.C., Taffet S.M., Delmar M. High incidence of cardiac malformations in connexin40-deficient mice. Circ Res 2003; 3(93): 201–206.

34. Cor de Wit , Roos F., Bolz S.S., Pohl U. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiological Genomics 2003; 13: 169–177.

35. Nikulina S.Yu., Chernova A.A., Shul'man V.A. et al. The role of connexin 40 gene polymorphism in the pathogenesis of hereditary sick sinus syndrome. CardioSomatika 2011; (1): 41–44. Russian (Никулина С.Ю., Чернова А.А., Шульман В.А. и др. Роль полиморфизма гена коннексина-40 в генезе наследственного синдрома слабости синусового узла. CardioСоматика 2011; (1): 41–44).

36. Lomasney J.W., Lorenz W., Allen L.F. et al. Expansion of the alpha 2-adrenergic receptor family: cloning and characterization of a human alpha 2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA 1990; 13(87): 5094–5098.

37. Regan J.W., Kobilka T.S., Yang-Feng T.L. et al. Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci USA 1988; 17(85): 6301–6305.

38. Hein L., Altman J.D., Kobilka B.K. Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 1999; 6758(402): 181–184.

39. Woldemussie E., Wijono M., Pow D. Localization of alpha 2 receptors in ocular tissues. Visual Neuro-science 2007; 24: 745–756.

40. Heinonen P., Koulu M., Pesonen U. et al. Identification of a three-amino acid deletion in the alpha-2B-adrenergic receptor that is associated with reduced basal metabolic rate in obese subjects. J Clin Endocr Metab 1999; 84: 2429–2433.

41. Suzuki N., Matsunaga T., Nagasumi K. et al. Аlpha(2B)-adrenergic receptor deletion polymorphism associates with autonomic nervous system activity in young healthy Japanese. J Clin Endocr Metab 2003; 88: 1184–1187.

42. Zhang H.F., Li X.L., Xie S.F. et al. ADRA2B gene insertion/deletion polymorphism and artery compliance. Chin Med J (Engl) 2005; 21(118): 1797–1802.

43. Laaksonen D.E., Siitonen N., Lindström J. et al. Physical activity, diet, and incident diabetes in relation to an ADRA2B polymorphism. Med Sci Sports Exerc 2007; 2(39): 227–232.

44. Li L.H., Li Y., Wen Y., Wang J.G. Anthropometric and metabolic phenotypes in relation to the ADRA2B deletion/insertion polymorphism in Chinese population. J Hypertens 2008; 11(26): 2161–2167.

45. Fava C., Montagnana M., Guerriero M. et al. Chromosome 2q12, the ADRA2B I/D polymorphism and metabolic syndrome. J Hypertens 2009; 9(27): 1794–1803.

46. Duling L.C., Cherng T.W., Griego J.R. et al. Loss of alpha2B-adrenoceptors increases magnitude of hypertension following nitric oxide synthase inhibition. Am J Physiol Heart Circ Physiol 2006; 5(291): 2403–2408.

47. Kintsurashvili E., Shenouda S., Ona D. et al. Hypertension in transgenic mice with brain-selective over-expression of the alpha(2B)-adrenoceptor. Am J Hypertens 2009; 11(22): 41–45.

48. Chen Q.J., Lu L., Jin C. et al. Insertion/insertion genotype of α(2B)-adrenergic receptor gene poly-morphism is associated with silent myocardial ischemia in patients with type 2 diabetes mellitus. Clin Biochem 2010; 15(43): 1201–1204.

49. Chernova A.A., Nikulina S.Iu., Shul'man V.A. et al. Polymorphisms of 2B-adrenergic receptor and endothelial NO-Synthase genes in genesis of the hereditary sick sinus node syndrome. Kardiologiia. 2011;51(6):55–9. Russian (Никулина С.Ю. Шульман В.А. Чернова А.А. и др. Полиморфизмы генов альфа2В-адренергического рецептора и эндотелиальной NO-синтазы в генезе наслед-ственного синдрома слабости синусового узла. Кардиология 2011; 51(6): 55–59).

50. Alvarez R., Gonzalez P., Batalla A. et al. Association between the NOS3 (-786 T/C) and the ACE (I/D) DNA genotypes and earlycoronaryarterydisease. Nitric Oxide 2001; 4(5): 343–348.

51. Casas J.P., Bautista L.E., Humphries S.E., Hingorani A.D. Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects. Circulation 2004; 11(109): 1359–1365.

52. Dosenko V.E., Zagory V.Y., Moibenko O.A., Parkhomenko A.N. Pathophysiological aspects of genetic polymorphism of endothelial NO-synthase. Physiological Journal 2002; 6 (48): 86–102. Ukrainian (Досенко В.Є., Загорій В.Ю., Мойбенко О.О., Пархоменко О.М. Патофізіологічні аспекти генетичного поліморфізму ендотеліальної NO-синтази. Фізіол журн 2002; 6(48): 86–102).

53. Saini V., Bhatnagar M.K., Bhattacharjee J. Association of endothelial dysfunction with endothelin, nitric oxide and eNOS Glu298Asp gene polymorphism in coronary artery disease. Dis Markers 2011; 4(31): 215–22.

54. Li Y.Y. Endothelial nitric oxide synthase G894T gene polymorphism and essential hypertension in the Chinese population: a meta-analysis involving 11,248 subjects. Intern Med 2011; 19(50): 2099– 2106.

55. Niu W., Qi Y. An updated meta-analysis of endothelial nitric oxide synthase gene: three well-characterized polymorphisms with hypertension. PLoS One 2011; 9(6): 242–266.

56. Parkhomenko A.N., Kozhukhov S.N, Lutay Ya.M. i dr. T-786C polymorphism in the promoter of the gene of endothelial NO-synthase: association with the efficacy of thrombolytic therapy in patients with acute myocardial infarction. Ukrainian Medical Journal 2008; 66(4): 20–23. Russian (Пархоменко А.Н., Кожухов С.Н, Лутай Я.М. и др. Полиморфизм T-786C промотора гена эндотелиальной NO-синтазы: связь с эффективностью тромболитической терапии у пациентов с острым инфарктом миокарда. Украинский Медицинский Часопис 2008; 66(4): 20–23).

57. Battelino N., Sebestjen M., Keber I. et al. Endothelial nitric oxide synthase T(-786)C polymorphism in children and adolescents with type 1 diabetes and impaired endothelium-dependent dilatation. Horm Res Paediatr 2011; 4(76): 248–253.

58. Kang J.H. et al. Reproductive factors and NOS3 variant interactions in primary open-angle glaucoma. Mol Vis 2011; 17: 2544–2551.

59. Shul'man V.A., Nikulina S.Iu., Dudkina K.V. et al. Polymorphisms of α-2-β-adrenergic receptor and endothelial NO-synthase genes in patients with atrial fibrillation. Kardiologiia 2011; 8(51): 54–58. Russian (Шульман В.А., Никулина С.Ю., Дудкина К.В. Полиморфизм генов α-2-β-адреноре-цепторов и эндотелиальной NO-синтазы у больных с фибрилляцией предсердий. Кардиология 2011; 8(51): 54–58).


For citation:


Chernova A.A., Nikulina S.Y., Tret'yakova S.S. GENETIC PREDICTORS OF IDIOPATHIC SICK SINUS SYNDROME. Rational Pharmacotherapy in Cardiology. 2012;8(6):804-809. (In Russ.) https://doi.org/10.20996/1819-6446-2012-8-6-804-809

Views: 260


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)