Preview

Rational Pharmacotherapy in Cardiology

Advanced search

MYOCARDIAL DEFORMATION AND COMPLETE LEFT BUNDLE BRANCH BLOCK

https://doi.org/10.20996/1819-6446-2012-8-6-781-787

Full Text:

Abstract

Tissue Doppler imaging is evolving as a useful echocardiographic tool for quantitative assessment of left ventricular systolic and diastolic function. Over the last 10 years, myocardial deformation imaging has become possible initially with tissue Doppler , and more recently with myocardial speckle-tracking using 2D echocardiography. Unlike simple tissue velocity measurements, deformation measurements are specific for the region of interest. Strain rate or strain measurements have been used as sensitive indicators for subclinical diseases, and it is the most widely used tool to assess mechanical dyssynchrony. Left bundle branch block is a frequent, etiologically heterogeneous, clinically hostile and diagnostically challenging entity. About 2% of patients underwent cardiac stress testing show stable or intermittent left bundle branch block. Presence of left bundle branch block is associated with a lower and slower diastolic coronary flow velocity especially during hyperemia. Stress echocardiography is the best option for the diagnosis of ischemic heart disease, albeit specificity and sensitivity reduce in patients with left bundle branch block in the territory of left anterior descending artery in presence of initial septum dyskinesia.

About the Authors

E. N. Pavlyukova
Research Institute of Cardiology , Siberian Branch of Russian Academy of Medical Sciences
Russian Federation


D. A. Kuzhel'
Krasnoyarsk State Medical University named after Prof. V.F . Voyno-Yasenetsky
Russian Federation


G. V. Matyushin
Krasnoyarsk State Medical University named after Prof. V.F . Voyno-Yasenetsky
Russian Federation


N. S. Veselkova
Krasnoyarsk State Medical University named after Prof. V.F . Voyno-Yasenetsky
Russian Federation


O. V. Avdeeva
Krasnoyarsk Territory Hospital №2
Russian Federation


V. S. Metelitsa
Krasnoyarsk State Medical University named after Prof. V.F . Voyno-Yasenetsky
Russian Federation


E. V. Samokhvalov
Territory Clinical Hospital
Russian Federation


E. A. Savchenko
Krasnoyarsk State Medical University named after Prof. V.F . Voyno-Yasenetsky
Russian Federation


References

1. Sengupta P.P., Khandheria B.K., Korinek J. et al. Biphasic tissue Doppler waveforms during isovolumic phases are associated with asynchronous deformation of subendocardial and subepicardial layers. J Appl Physiol 2005:99;1104–1111.

2. Geerts L., Bovendeerd P., Nicolay K., Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol 2002;283:H139–H145.

3. Hsu E.W., Henriquez C.S. Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging. J Cardiovasc Magn Reson 2001;3: 339–347.

4. Tseng W.Y., Reese T.G., Weisskoff R.M., et al. Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 2000;216:128–139.

5. Rushmer R.F. Initial phase of ventricular systole: asynchronous contraction. Am J Physiol 1956;184:188– 194.

6. Markhasin V.S., Solovyova O., Katsnelson L.B., et al. Mechano-electric interactions in heterogeneous myocardium: development of fundamental experimental and theoretical models. Prog Biophys Mol Biol 2003;82:207–220.

7. Ashikaga H., van der Spoel T.I., Coppola B.A., Omens J.H. Transmural myocardial mechanics during isovolumic contraction. JACC Cardiovasc Imaging 2009;2:202–11.

8. Auricchio А., Fantoni С., Regoli F., et al. Characterization of Left Ventricular Activation in Patients With Heart Failure and Left Bundle-Branch Block. Circulation 2004;109:1133–1139.

9. Bader H., Garrigue S., Lafitte S., et al. Intra left ventricular electromechanical asynchrony. A new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol 2004;43:248– 56: 3149–56.

10. Bax J.J., Gorcsan J. Echocardiography and noninvasive imaging in cardiac resynchronization therapy: results of the PROSPECT (Predictors of Response to Cardiac Resynchronization Therapy) study in perspective. J Am Coll Cardiol 2009;53:1933–43.

11. Sanderson J.E. Echocardiography for cardiac resynchronization therapy selection: fatally flawed or misjudged? J Am Coll Cardiol 2009;53:1960–4.

12. Gorcsan J. III., Abraham T., Agler D.A., et al. Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting—a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr 2008;21:191–213.

13. Hesse B., Diaz L.A., Snader C.E., et al. Complete bundle branch block as an independent predictor of all-cause mortality: report of 7,073 patients referred for nuclear exercise testing. Am J Med 2001;110:253–259.

14. Picano E. Stress echocardiography. 4-th ed. Heidelberg: Springer-Verlag; 2003.

15. Cortigiani L., Picano E., Vigna C., et al. Prognostic value of pharmacologic stress echocardiography-disease in patients with left bundle branch block. Am J Med 2001;110:361–369.

16. Ono S., Nohara R., Kambara H., et al. Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation 1992;85:1125–1131.

17. Geleijnse M.L., Vigna C., Kasprsak J.D., et al. Usefulness and limitations of dobutamine-atropine stress echocardiography for the diagnosis of coronary artery disease in patients with left bundle branch block. A multicentre study. Eur Heart 2000;21:1666–1673.

18. Vigna C., Stanislao M., De Rito V., et al. Dipiridamole stress echocardiography vs dipiridamole sestamibiscintigraphy for diagnosing coronary artery disease in left bundle-branch block. Chest 2001;120:1534–1539.

19. Yu C.-M., Sanderson J.E., Marwick T.H., Oh J.K. Tissue Doppler Imaging. A New Prognosticator for Cardiovascular Diseases. J Am Coll Cardiol 2007;49:1903–1914.

20. Marwick Т.Н. Measurement of Strain and Strain Rate by Echocardiography. Ready for Prime Time? J Am Coll Cardiol 2006;47:1313–1327.

21. Sutherland G.R., Di S.G., Claus P., et аl. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function J Am Soc Echocardiogr 2004;17:788–802.

22. Park T.H., Nagueh S.F., Khoury D.S., et al. Impact of myocardial structure and function postinfarction on diastolic strain measurements: implications for assessment of myocardial viability Am J Physiol Heart Circ Physiol 2006;290:H724–H731.

23. Reisner S.A., Lysyansky P., Agmon Y., et al. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr 2004;17:630–3.

24. Mottram P.M., Haluska B., Leano R., et al. Effect of aldosterone antagonism on myocardial dysfunction in hypertensive patients with diastolic heart failure Circulation 2004;110:558–565.

25. Leitman M., Lysyansky P., Sidenko S., et al. Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function J Am Soc Echocardiogr 2004;17:1021– 1029.

26. Alharthi M.S., Jiamsripong P., Calleja A., et al. Selective echocardiographic analysis of epicardial and endocardial left ventricular rotational mechanics in an animal model of pericardial adhesions. Eur J Echocardiogr 2009;10:357–62.

27. Mor-Avi V., Lang R.M., Badano L.P., et al. Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications. J Am Soc Echocardiogr 2011;24:277–313.

28. Kuznetsova T., Herbots L., Richart T., et al. Left ventricular strain and strain rate in a general population. Eur Heart J 2008;29:2014–23.

29. Sengupta P.P., Tajik A.J., Chandrasekaran K., Khandheria B.K. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging 2008;1:366–76.

30. Takeuchi M., Nakai H., Kokumai M., et al. Agerelated changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J Am Soc Echocardiogr 2006;19:1077–84.

31. Burns A.T., La G.A., Prior D.L., Macisaac AI. Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc Imaging 2009;2:709–16.

32. Weidemann F., Herrmann S., Stork S., et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009;120:577–84.

33. Mizushige K., Yao L., Noma T., et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 2000;101:899–907.

34. Marwick T.H., Leano R.L., Brown J., et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2009;2:80–4.

35. Jasaityte R., Dandel M., Lehmkuhl H., Hetzer R. Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging. Transplant Proc 2009;41:277–80.

36. Chan J., Hanekom L.,Wong C., et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 2006;48:2026–33.

37. Becker M., Bilke E., Kuhl H., et al. Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 2006;92:1102–8.

38. Marwick TH. Stress echocardiography. Heart 2003; 89:113–8.

39. Hoffmann R., Marwick T.H., Poldermans D., et al. Refinements in stress echocardiographic techniques improve inter-institutional agreement in interpretation of dobutamine stress echocardiograms. Eur Heart J 2002; 23: 821–9.

40. Kvitting J.P., Wigstrom L., Strotmann J.M., Sutherland G.R. How accurate is visual assessment of syn-chronicity in myocardial motion? An in vitro study with computersimulated regional delay in myocardial motion: clinical implications for rest and stress echocardiography studies. J Am Soc Echocardiogr 1999; 12: 698–705.

41. Amundsen B.H., Helle-Valle T., Edvardsen T., et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 2006;47:789–93.

42. Antoni M.L., Mollema S.A., Delgado V., et al. Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J 2010;31:1640–7.

43. Armstrong G., Pasquet A., Fukamachi K., et al. Use of peak systolic strain as an index of regional left ventricular function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia. J Am Soc Echocardiogr 2000;13: 731–7.

44. Urheim S., Edvardsen T., Torp H., et al. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158–64.

45. Bjork I.C., Rozis E., Slordahl S.A., Marwick T.H. Incremental value of strain rate imaging to wall motion analysis for prediction of outcome in patients undergoing dobutamine stress echocardiography. Circulation 2007;115: 1252–9.

46. Kukulski T., Jamal F., Herbots L., et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J Am Coll Car-diol 2003; 41: 810–9.

47. Marwick Т.Н., Yu Ch-M., Sun J.P. Myocardial Imaging: Tissue Doppler and Speckle Tracking. Oxford: Blackwell Publishing; 2007.

48. Weidemann F., Dommke C., Bijnens B., et al. Defining the transmurality of a chronic myocardial infarction by ultrasonic strain-rate imaging: implications for identifying intramural viability: an experimental study. Circulation 2003; 107: 883–8.

49. Weidemann F., Wacker C., Rauch A., et al. Sequential changes of myocardial function during acute myocardial infarction, in the early and chronic phase after coronary intervention described by ultrasonic strain rate imaging. J Am Soc Echocardiogr 2006; 19: 839–47.

50. Reant P., Labrousse L., Lafitte S., et al. Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions. J Am Coll Cardiol 2008;51:149–57.

51. Notomi Y., Lysyansky P., Setser RM., et al. Measurement of ventricular torsion by twodimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 2005;45:2034–41.

52. Marciniak M., Claus P., Streb W., et al. The quantification of dipyridamole induced changes in regional deformation in normal, stunned or infarcted myocardium as measured by strain and strain rate: an experimental study. Int J Cardiovasc Imaging 2008;24:365–76.

53. Voigt J.U., Exner B., Schmiedehausen K., et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003;107: 2120–6.

54. Stefani L., Toncelli L., Di TV., et al. Supernormal functional reserve of apical segments in elite soccer players: an ultrasound speckle tracking handgrip stress study. Cardiovasc Ultrasound 2008;6:14.

55. Fuchs E., Muller M.F., Oswald H., et al. Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail 2004; 6: 715–22.


For citation:


Pavlyukova E.N., Kuzhel' D.A., Matyushin G.V., Veselkova N.S., Avdeeva O.V., Metelitsa V.S., Samokhvalov E.V., Savchenko E.A. MYOCARDIAL DEFORMATION AND COMPLETE LEFT BUNDLE BRANCH BLOCK. Rational Pharmacotherapy in Cardiology. 2012;8(6):781-787. (In Russ.) https://doi.org/10.20996/1819-6446-2012-8-6-781-787

Views: 2477


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)