Rational Pharmacotherapy in Cardiology

Advanced search


Full Text:


Widespread use of antihypertensive and lipid-lowering agents in clinical practice determines the necessity of knowledge of their pleiotropic effects. Results of studies of the effect of cardiac drugs and, first of all beta-blockers, ACE inhibitors, diuretics, and statins on bone are presented. Mode of action on the bone mineral density , markers of bone turnover and ultimately impact on the incidence of fractures associated with osteoporosis are discussed. At the present time there are no sufficient evidences of positive effect of these medications on bone coming from randomized controlled trials. It is not possible to recommend discussed cardiovascular drugs for prevention of osteoporosis and fractures, as well as registration new indications for them. However , knowledge of additional effects on the bone metabolism in cardiovascular drugs, will allow doctors to choose optimal treatment of hypertension and lipid disorders, taking into account the state of bone tissue. At the same time it will also allow to prevent osteoporosis in patients having osteoporosis risk factors or initial signs of bone loss.

About the Authors

I. A. Skripnikova
State Research Center for Preventive Medicine
Russian Federation

K. E. Sobchenko
State Research Center for Preventive Medicine
Russian Federation

O, V. Kosmatova
State Research Center for Preventive Medicine
Russian Federation

D. V. Nebieridze
State Research Center for Preventive Medicine
Russian Federation


1. Bartholow M. Top 200 prescription drugs of 2009. Pharmacy Times 2010. Available at: ht tp:// Date of access 29/08/2012.

2. Browner W.S., Seeley D.G., Vogt T.V. Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet 1991; 338: 335–38.

3. Tanko L.B., Christiansen C., Cox D.A., et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 2005; 20: 1912–1920.

4. von der Recke P ., Hanse M.A., Hassanger C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 1999; 106:273–278.

5. Moore R.E., Smith C.K., Bailey C.S. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can simulate bone resorption in organ culture. J Bone Miner Res 1993; 23:301–15.

6. Takeda S., Elefteriou F ., Levasseur R., et. al. Leptin inhibits bone formation via the sympathetic nervous system. Cell 2002; 189: 47–60.

7. Ducy P ., Amling M., Takeda S. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000; 100: 197–207.

8. Majeska R.J., Minkowitz B., Bastian W., Einhorn T .A. Effects of beta-adrenergic blockade in an osteoblast-like cell line. J Orthop Res 1992; 10: 370–84.

9. Pasco J.A., Henry M.J., Sanders K.M., Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 2004; 19: 19– 24.

10. Schoo M., Sturkenboom P .,Van Leeuwen J., Use of beta-blockers is associated with BMD and fracture risk. Bone 2005; 36 S2: 129–130.

11. Rejnmark L., Vestergaard P ., Kassem M., Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int 2004; 75: 365–372.

12. Bonnet N., Gadois C., McCloskey E., Protective effect of beta-blockers in postmenopausal women: influence on fractures, bone density , micro and macroarchitecture. Bone 2007; 40: 1209–1216.

13. Reid I.R, Gamble G.D., Grey A.B, et al. Beta-blockers use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 2005; 20:613–8

14. Lavasseur R., Marcelli C., Savatier J.P . et al. Beta-blockers use, BMD, and fractures risk in older women: results from the Epidemiologie de L’Osteoporose Prospective Study. J Am Geriatr Soc 2005; 53: 550–552.

15. Yang S., Nguyen N.D., Center J.R., Association between beta-blocker use and fracture risk^ the Dubbo Osteoporosis Epidemiology Study. Bone 2011; 48(3): 451–455.

16. Turker S., Karatosun V., Gunai I. Beta-blockers increase bone mineral density. Clin Orthop 2006; 443: 73–74.

17. Reid I.R., Lucas J., Wattie D., et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women. Randomized controlled trial. J Clin Endocrinol Metab 2005; 90: 5212–16.

18. Pasco J.A., Henry M.J., Nicholson G.C., B-blockers reduce bone resorption marker in early post- menopausal women. Ann Human Biol. 2005; 32: 738–745

19. Schlienger R.G., Kraenzlin M.E., Jick S.S., Meier C.R. Use of beta-blockers and risk of fractures. JAMA 2004; 292: 1326–32.

20. de Vries F ., Souverein P .C., Leufkens H.G., van Staa T.P . Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and the Netherlands. Calcif Tissue Int 2007; 80: 69–75.

21. Rejnmark L, Vestergaard P , Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium- channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens 2006; 24: 581–9.

22. Weins M., Etminan M., Gill S.S., Takkouche B., Effects of antihypertensive drug treatments on fractures outcomes: a meta-analysis of observational studies. Journal of international studies 2006; 260: 350–62.

23. Meisinger C., Heier M., Lang O., Doring A. Beta-Blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Ausburg cohort study. Osteoporos int 2007; 18(9): 1189–95.

24. Reid I.R., Gamble G.D., Grey A.B. et al. Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 2005; 20: 613–8.

25. Toker . A, Gulcan E., Toker S., Nebivolol might be beneficial in osteoporosis treatment: a hypothesis. TJPR 2009; 8(2): 181–186.

26. Rejnmark L. Cardiovascular Drugs and Bone. Curr Drug Saf 2008; 3: 178–184.

27. Cruz A.С., Gruber B.L. Statins and osteoporosis: can these lipid-lowering drugs also bolster bones? Cleve Clin J Med 2002; 69(4): 277–278, 280–282, 287–288.

28. Zhang F .L., Casey P .J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65: 241–269.

29. van Beek E., Pieterman E., Cohen L. et al. Biochem Biophys Res Commun 1999; 264(1): 108–111.

30. Mundi G., Garret S. et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286: 1946–49.

31. Sakou T . Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 1998;22:591–603.

32. Woo J., Kasai S., Stern P ., Nagai K. Compactin suppresses bone resorption by inhibiting the fusion of perfusion osteoclasts and disrupting the actin ring in osteoclasts. J Bone Miner Res 2000; 15: 650– 8.

33. Stark W., Blaskovich M., Johnson B., Qian Y ., et al. Inhibiting geranylgeranylation blocks growth and promotes apoptosis in pulmonary vascular smooth muscle cells. American journal of physiology 1998; 275: 55–63.

34. Vickers S., Duncan C.A., Chen I.W., et al. Metabolic disposition studies on simvastatin, a cholesterol-lowering prodrug. Drug Metab Dispos 1990; 18: 138–45.

35. Rejnmark L., Vestergaard P ., Mosekilde L. Statin but not non-statin lipid-lowering drugs decrease fracture risk: A nation-wide case-control study. Calcif Tissue Int 2006; 79: 27–36.

36. Sugiyama M., Kodama T., Konishi K., et al. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun 2000; 271: 688–92.

37. Watanabe S., Fukumoto S., Takeuchi Y ., Effects of 1-year treatment with fluvastatin or pravastatin on bone. Am J Med 2001; 110: 584–7.

38. Chung Y .S., Lee M.D., Lee S.K., et al. HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients J Clin Endocrinol Metab 2000; 85: 1137–42.

39. Hatzigeorgiou C., Jackson J.L. Hydroxymethylglutaryl-coenzyme-A reductase inhibitors and osteoporosis: a meta-analysis. Osteoporos Int 2005; 16: 990–98.

40. Edwards C.J., Hart D.J., Spector T .D. Oral statins and increased bone mineral density in postmenopausal women. Lancet 2000; 355: 2218–9.

41. Chan M.H., Mak T.W., Chiu R.W., et al. Simvastatin increases serum osteocalcin concentration in patients treated for hypercholesterolemia. J Clin Endocrinol Metab 2001; 86: 4556–9.

42. Lindsay R., Nieves J., Formica C., et al. Randomized controlled study of effect of parathyroid hormone on vertebral bone mass and fracture incidence among postmenopausal women on estrogen with osteoporosis. Lancet 1997; 350: 550–5.

43. Bauer D.C., Mundy G., Jamal S., et al. Use of statins and fracture: results of four prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch Intern Med 2004;164(2):146–52.

44. Wang P .S., Solomon D.H., Mogun H., Avorn J. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 2000; 283: 3211–6.

45. Chan K.A., Andrade S.E., Boles M., et al. Inhibitors of hydroxymethilglutaril-coenzyme A reductase and risk of fracture among older women. Lancet 2000; 355: 2185–8.

46. Humayun A., Shah A.S., Alam S., Hussein H. Relationship of body mass index and dyslipidemia in different age groups of male and female population of Peshawar . JAMC 2009; 21(2): 141–4.

47. LaCroix A.Z., Cauley J., Jakson R., et al. Does statin use reduce risk of fracture in postmenopausal women? Results from the Women Health Initiative Observational Study (WHI-OS). J Bone Miner Res 2000; 15(Suppl): 1066.

48. Hatton R., Stimpel M., Chambers T.J. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J Endocrinol 1997; 152: 5–10.

49. Hiruma Y ., Inoue A., Hirose S., Hagiwara H. Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochem Biophys Res Commun 1997;230(1):176–8.

50. Hiruma H., Hiruma Y ., Inoue F ., et al. Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J Endocrinol 1998; 156: 543–550.

51. Grant F .D., Mandel S.J., Brown E.M., et al. Interrelationships between the renin-angiotensin-aldosterone and calcium homeostatic systems. J Clin Endocrinol Metab 1992; 75: 988–992.

52. Lynn H., Kwok T ., Wong S.Y ., et al. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone 2006;34(4): 584–588.

53. Perez-Castrillon J.L., Justo I, Relationship between bone mineral density and angiotensin converting enzyme polymorphism in hypertensive postmenopausal women. AJH 2003; 16: 233–235.

54. Perez-Castrilon J.L., Silva J., Justo I. Effect of quinapril, quinapril-hydrohlorthyazide, and enalapril on the bone mass of the hypertensive subjects: Relationship with angitensin converting enzyme polymorphisms. Am J Hypertens 2003; 16: 452–459.

55. Perez-Castrilon J.L., Justo I., Silva J. et. al. Bone mass fnd bone modelling markers in hypertensive post-menopausal women. J Hum Hypertens 2003 ; 17: 107–110.

56. Raid I.R., Ames R.W., Orr-Walker B.J. et al. Hydrochlorothiazide reduces loss of cortical bone in normal postmenopausal women: a randomized controlled trial. Am J Med 2000;109:362–370.

57. Schoofs M., Klift M., Hofman A. et. al. Thiazide diuretics and the risk for hip fracture. Ann Intern Med 2003;139:476–482.

58. Alberts M.M., Johnson W., Vivian V. Chronic use of calcium channel blocker nifidepine has no significant effect on bone metabolism in men. Bone 1991; 12: 39–42.

59. Zofkova I., Kanchaeva R.L. The effect of nifidepine on serum parathyroid and calcitonin in postmenopausal women. Life Sciences 1995; 57: 1087–1096.

60. Zacharieva S., Shigarminova R., Nachev E. et al. Effect of amlodipine and hormone replacement therapy on blood pressure and bone markers in menopause. Methods Find Exp Clin Pharmacol 2003; 25: 209–213.

61. Jamal, S.A, Browner , W.S., Bauer , D.C., Cummings, S.R. Intermittent use of nitrates increases bone mineral density: the study of osteoporotic fractures. J Bone Miner Res 1998;13(11):1755–9.

62. Rejnmark L., Vestergaard P ., Mosekilde L. Decreased fracture risk in users of organic nitrates: a nationwide cause-control study. J Bone Miner Res 2006;21: 1811–17

63. Rejnmark L., Vestergaard P ., Mosekilde L. Fracture risk in patients treated with amiodarone or digoxin for cardiac arrhythmias: a nation-wide case-control study. Osteoporosis Int 2007; 18: 409–17.

64. Schoner W., Scheiner Bobis G.. Endogenous and Exogenous Cardiac Glycosides and their Mechanisms of Action. Am J Cardiovasc Drugs 2007; 7:173–89.

For citation:

Skripnikova I.A., Sobchenko K.E., Kosmatova O.V., Nebieridze D.V. EFFECT OF CARDIOVASCULAR DRUGS ON BONE HEALTH AND THE POSSIBILITY OF THEIR USE FOR THE PREVENTION OF OSTEOPOROSIS. Rational Pharmacotherapy in Cardiology. 2012;8(4):587-594. (In Russ.)

Views: 509

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)