Preview

Rational Pharmacotherapy in Cardiology

Advanced search

THE ASSESSMENT OF EFFECTS OF COMBINED THERAPY WITH MILDRONATE ON LIPID PROFILE, INFLAMMATORY FACTORS AND ENDOTHELIUM FUNCTION IN PATIENTS WITH ISCHEMIC HEART DISEASE

https://doi.org/10.20996/1819-6446-2007-3-3-10-14

Full Text:

Abstract

Aim. To study the effect of treatment with metabolic corrector mildronate on lipid profile, inflammatory factors and endothelium function in patients with ischemic heart disease (IHD).

Material and methods. 60 patients with IHD (stable exertional angina, II-IV functional class) were included in to the study. They were split in two groups. Patients of the main group (n=30) were treated with mildronate (1000 mg per day during 3 months) combined with standard therapy. Patients of the second group (n=30) received the standard therapy only. Total cholesterol (TC), triglycerides (TG), cholesterol of low density lipoproteid (LDL-C), cholesterol of high density lipoproteid (HDL-C), aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), creatine kinase (CK), C-reactive protein (CRP), interleukin-6 (IL-6), lipoprotein (α) (Lp(α)), NO3 were determined. Besides endothelium dependent vasodilatation of brachial artery was studied.

Results. TC, HDL-C and TG levels did not differ before and after treatment with mildronate, but LDL-C level significantly reduced (from 3.06±1.32 to 2.7±1.0 mmol/l, p<0.05) in IHD patients after 3 months of mildronate treatment. There was significant decrease in CRP level (from 1.5±1.8 to 1.0±1.1 mg/l, р<0.01) and absent of IL-6 level difference (before treatment – 3.7±2.3 and after treatment – 3.4±1.8 pg\ml, p>0.05). The significant change of Lp(α) was not found in both groups. Increase in endothelium dependent vasodilatation was noted after mildronate treatment. Besides increase in NO3 level in blood was detected (from 33.5±10.0 to 44.1±32.3 µmol/l, р<0.05).

Conclusion. Data of the study demonstrated that metabolic correctors exert positive influence on lipid profile and inflammatory factors in patients with IHD. 

About the Authors

I. V. Sergienko
Russian Cardiological Research Complex of Roszdrav, Moscow
Russian Federation


V. V. Kukharchuk
Russian Cardiological Research Complex of Roszdrav, Moscow
Russian Federation


S. A. Gabrusenko
Russian Cardiological Research Complex of Roszdrav, Moscow
Russian Federation


V. V. Malakhov
Russian Cardiological Research Complex of Roszdrav, Moscow
Russian Federation


V. P. Masenko
Russian Cardiological Research Complex of Roszdrav, Moscow
Russian Federation


M. I. Tripoten
Russian Cardiological Research Complex of Roszdrav, Moscow
Russian Federation


T. V. Balahonova
Russian Cardiological Research Complex of Roszdrav, Moscow
Russian Federation


References

1. American Heart Association. Heart Disease and Stroke Statistics – 2005 Update. Dallas, Tex: American Heart Association; 2004.

2. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A-thiolase. Circ Res 2000;86:580–8.

3. Bricaud H, Brottier L, Barat JL et al. Cardioprotective effect of trimetazidine in severe ischemic cardiomyopathy. Cardiovasc Drugs Ther 1990;4(Suppl 4):861–5.

4. Hansen PR. Myocardial reperfusion injury: experimental evidence and clinical relevance. Eur Heart J 1995;16:734-40.

5. Lopaschuk GD. Fatty acid and glucose metabolism: a target for intervention. In: Hearse DJ, ed. Metabolic approaches to ischaemic heart disease and its management. London: Science Press, 1998; P. 44-57.

6. Chaitman BR, Pepine CJ, Parker JO et al. Effects of ranolazine with atenolol, amlodipine or diltiazemon exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial JAMA. 2004;291:309-16.

7. Гуревич М.В., Гуревич К.Г. Применение метаболических препаратов триметазидина и милдроната при ишемической болезни сердца, хронической сердечной недостаточности и их сочетании. Фарматека 2002;(4):24-7.

8. Тепляков А.Т., Санкевич Т.В., Степачева Т.А., Мамчур С.Е. Миокардиальная цитопротекция ингибитором β-окисления жирных кислот милдронатом в виде монотерапии и в сочетании с β-адреноблокатором атенололом у больных постинфарктной дисфункцией левого желудочка. Кардиология 2003;43:15-8.

9. Liu B, Clanachan AS, Schulz R, Lopaschuk GD. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 1996;79:940-8.

10. Altarejos JY, Taniguchi M, Clanachan AS, et al. Myocardial ischemia differentially regulates LKB1 and an alternate 5'-AMP-activated protein kinase. J Biol Chem 2005,280:183-90.

11. Lopaschuk GD, Wambolt R, Barr L. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Therap. 1993;264:135-44.

12. Lopaschuk GD, Stanley WC. High levels of fatty acids delay the recovery of intra￾cellular pH and cardiac efficiency inpost-ischemic hearts by inhibiting glucose oxidation. Circulation. 1997;95:313-5.

13. Lopaschuk G, Belke D, Gamble J, et al. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1994;1213:263-76.

14. Dorbala Sh, Di Carli MF. Metabolic imaging of myocardial stunning. Circulation, 1992;86(6):1671-91.

15. Наумов В.Г, Сергиенко И.В., Малахов В.В. Влияние курсовой терапии милдронатом на ишемию миокарда у больных ишемической болезнью сердца. VI Российская конференция «Реабилитация и вторичная профилактика в кар- диологии», М., 2005: 148.

16. Сергиенко И.В., Малахов В.В., Наумов В.Г. Антиангинальная и антиишемическая эффективность милдроната в комплексном лечении у больных ИБС стабильной стенокардией напряжения. Атмосфера. Кардиология 2005;2:43-5.

17. Кухарчук В.В., Сергиенко И.В., Габрусенко С.А., и др. Влияние терапии корректорами метаболизма на параметры центральной гемодинамики у больных с недостаточностью кровообращения. РФК 2007: в печати.

18. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000;101:1767-72.

19. Wahre T, Yundestat A, Smith C, et al. Increased expression of interleukin-1 in coronary artery disease with downregulatory effects of HMG-CoA reductase inhi￾bitors. Circulation 2004;109: 1966-72.

20. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med. 1995;332:481-7.

21. Masumoto A, Hirooka Y, Hironaga K, et al. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol 2001;88:1291-4.

22. Корягина Н.А., Василец Л.М., Туев А.В. Возможности милдроната в комплексной антиаритмической терапии желудочковой экстрасистолии у пациентов с ишемической болезнью сердца. Материалы XIV Российского национального конгресса «Человек и лекарство», М., 2007: 122-123.

23. Зорькина А.В., Александровский А.А., Бин Хатабин Х.А.А. Влияние милдроната и мексидола на некоторые показатели липидного обмена у больных ишемической болезнью сердца. Там же.

24. Голиков А.П., Бойцов С.А., Михин В.П., Фролов А.А. Свободнорадикальное окисление и сердечно-сосудистая патология. Лечащий врач 2003;(4):23-8.


For citation:


Sergienko I.V., Kukharchuk V.V., Gabrusenko S.A., Malakhov V.V., Masenko V.P., Tripoten M.I., Balahonova T.V. THE ASSESSMENT OF EFFECTS OF COMBINED THERAPY WITH MILDRONATE ON LIPID PROFILE, INFLAMMATORY FACTORS AND ENDOTHELIUM FUNCTION IN PATIENTS WITH ISCHEMIC HEART DISEASE. Rational Pharmacotherapy in Cardiology. 2007;3(3):10-14. (In Russ.) https://doi.org/10.20996/1819-6446-2007-3-3-10-14

Views: 604


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)