Rational Pharmacotherapy in Cardiology

Advanced search

Biomarkers in assessing the vulnerability of atherosclerotic plaques: a narrative review



Aim. To study the role of biomarkers in assessing the vulnerability of atherosclerotic plaques.

Material and methods. A review of literature sources investigating the biomarker assessment of the vulnerability of atherosclerotic plaques published for the period 01.01.2016 to 31.12.2022 was carried out. Literature search was carried out in English and Russian in PubMed databases, in Google Academy, according to the following keywords: “biomarkers of plaque vulnerability”, “NLR and vulnerable plaque”, “CRP and vulnerable plaque”, ”MMP-9 and vulnerable plaque”, “TIMP-1 and vulnerable plaque”, ”galectin-3 and vulnerable plaque”, “NGAL and vulnerable plaque”. A total of 183 articles were found, of which 42 articles in full-text format containing original clinical studies were selected for the preparation of this review.

Results. Numerous studies have shown that the vulnerability and rupture of the plaque, rather than its size and severity of stenosis, are the main cause of cardiovascular events in patients with coronary heart disease. Small plaques rich in lipids often become unstable due to an inflammatory reaction supported by the interaction between lipoproteins, monocytes, macrophages, T-lymphocytes and vascular wall cells. NLR, CRP, NGAL, Galectin-3, as well as markers of extracellular matrix degradation (MMP-9, TIMP-1) can play a special role in assessing the vulnerability of plaques.

Conclusion. The development of acute coronary syndrome is based on the destabilization of the atherosclerotic plaque, which occurs not only due to changes in its lipid composition, but also infiltration by immuno-inflammatory cells, degradation of the extracellular matrix, as well as an active inflammatory reaction and neovascularization of the plaque. Therefore, traditional imaging methods that characterize the plaque by its appearance and size are not enough to predict the risk of rupture and the development of an acute thrombotic event. Thus, there is a need to identify new biomarkers that would correlate with the instability of plaque atheroma.

About the Authors

A. N. Kovalskaya
Samara State Medical University
Russian Federation

Anna N. Kovalskaya

D. V. Duplyakov
Samara State Medical University; V.P. Polyakov Samara Regional Clinical Cardiology Dispensary
Russian Federation


1. Lynch M, Barallobre-Barreiro J, Jahangiri M, Mayr M. Vascular proteomics in metabolic and cardiovascular diseases. J Intern Med. 2016;280(4):325–338. DOI:10.1111/joim.12486.

2. Li T, Li X, Feng Y, et al. The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediators Inflamm. 2020;2020:3872367. DOI:10.1155/2020/3872367.

3. Mushenkova NV, Summerhill VI, Zhang D, et al. Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci. 2020;21(8):2992. DOI:10.3390/ijms21082992.

4. Kumric M, Borovac JA, Martinovic D, et al. Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules. 2021;11(6):881. DOI:10.3390/biom11060881.

5. Theofilis P, Sagris M, Antonopoulos AS, et al. Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques. Tomography. 2022;8(4):1742-1758. DOI:10.3390/tomography8040147.

6. Kume N, Kita T. New scavenger receptors and their functions in atherogenesis. Curr Atheroscler Rep. 2002;4(4):253-7. DOI:10.1007/s11883-002-0001-y.

7. Badimon L, Peña E, Arderiu G, et al. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol. 2018;9:430. DOI:10.3389/fimmu.2018.00430.

8. Scherbak SG, Kamilova TA, Lebedeva SV. Biomarkers of Carotid Stenosis. Physical and rehabilitation medicine, medical rehabilitation. 2021;3(1):104-130 (In Russ.) DOI:10.36425/rehab64286.

9. Utkina EA, Afanasyeva OI, Pokrovsky SN. C-reactive protein: pathogenetic characteristics and possible therapeutic target. Russian Journal of Cardiology. 2021;26(6):4138. (In Russ.) DOI:10.15829/1560-4071-2021-4138.

10. Jiang J, Zeng H, Zhuo Y, et al. Association of Neutrophil to Lymphocyte Ratio With Plaque Rupture in Acute Coronary Syndrome Patients With Only Intermediate Coronary Artery Lesions Assessed by Optical Coherence Tomography. Front Cardiovasc Med. 2022;9:770760. DOI:10.3389/fcvm.2022.770760.

11. Chaulin AM, Grigorieva YuV, Pavlova TV, Duplyakov DV. Diagnostic significance of complete blood count in cardiovascular patients. Russian Journal of Cardiology. 2020;25(12):3923. (In Russ.) DOI:10.15829/1560-4071-2020-3923.

12. Li X, Li J, Wu G. Relationship of Neutrophil-to-Lymphocyte Ratio with Carotid Plaque Vulnerability and Occurrence of Vulnerable Carotid Plaque in Patients with Acute Ischemic Stroke. Biomed Res Int. 2021;2021:6894623. DOI:10.1155/2021/6894623.

13. Wang XH, Liu SQ, Wang YL, Jin Y. Correlation of serum high-sensitivity C-reactive protein and interleukin-6 in patients with acute coronary syndrome. Genet Mol Res. 2014;13(2):4260-6.22. DOI:10.4238/2014.June.9.11.

14. Chiorescu RM, Mocan M, Inceu AI, et al. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci. 2022;23(21):13638. DOI:10.3390/ijms232113638.

15. Groot HE, Al Ali L, van der Horst ICC, et al. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. 2019;108(6):612-621. DOI:10.1007/s00392-018-1387-z.

16. Held C, White HD, Stewart RAH, et al. Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc. 2017;6(10):e005077. DOI:10.1161/JAHA.116.005077.

17. Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules. 2020;10(3):389. DOI:10.3390/biom10030389.

18. Gao Z, Liu Z, Wang R, et al. Galectin-3 Is a Potential Mediator for Atherosclerosis. J Immunol Res. 2020;2020:1-11. DOI:10.1155/2020/5284728.

19. Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in cardiovascular diseases. Int J Mol Sci. 2020;21(23):9232. DOI:10.3390/ijms21239232.

20. Cheng Z, Cai K, Xu C, et al. Prognostic Value of Serum Galectin-3 in Chronic Heart Failure: A Meta-Analysis. Front Cardiovasc Med. 2022;9:783707. DOI:10.3389/ fcvm.2022.783707.

21. Agnello L, Bivona G, Lo Sasso B, et al. Galectin-3 in acute coronary syndrome. Clin Biochem. 2017;50(13-14):797-803. DOI:10.1016/j.clinbiochem.2017.04.018.

22. Ozturk D, Celik O, Satilmis S, et al. Association between serum galectin-3 levels and coronary atherosclerosis and plaque burden/structure in patients with type 2 diabetes mellitus. Coron Artery Dis. 2015;26(5):396-401. DOI:10.1097/MCA.0000000000000252.

23. Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. The Diagnostic and Therapeutic Potential of Galectin-3 in cardiovascular diseases. Biomolecules. 2021;12(1):46. DOI:10.3390/biom12010046.

24. Li M, Guo K, Huang X, et al. Association Between Serum Galectin-3 Levels and Coronary Stenosis Severity in Patients with Coronary Artery Disease. Front Cardiovasc Med. 2022;9:818162. DOI:10.3389/fcvm.2022.818162.

25. Kook H, Jang DH, Kim JH, et al. Identification of plaque ruptures using a novel discriminative model comprising biomarkers in patients with acute coronary syndrome. Sci Rep. 2020;10(1):20228. DOI:10.1038/s41598-020-77413-3.

26. Eilenberg W, Stojkovic S, Piechota-Polanczyk A, et al. Neutrophil GelatinaseAssociated Lipocalin (NGAL) is Associated with Symptomatic Carotid Atherosclerosis and Drives Pro-inflammatory State In Vitro. Eur J Vasc Endovasc Surg. 2016;51(5):623-31. DOI:10.1016/j.ejvs.2016.01.009.

27. Sahinarslan A, Kocaman SA, Bas D, et al. Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease. Coron Artery Dis. 2011;22:333-8. DOI:10.1097/MCA.0b013e3283472a71.

28. Akcay AB, Ozlu MF, Sen N, et al. Prognostic significance of neutrophil gelatinaseassociated lipocalin in ST-segment elevation myocardial infarction. J Investig Med. 2012;60(2):508-13. DOI:10.2310/JIM.0b013e31823e9d86.

29. Zykov MV, Kashtalap VV, Bykova IS, et al. Clinical and prognostic value of serum neutrophil gelatinase-associated lipocalin in patients with ST-segment elevation myocardial infarction. Kardiologiia. 2016;56(5):24-9. (In Russ.) DOI:10.18565/cardio.2016.5.24-29.

30. Sivalingam Z, Larsen SB, Grove EL, et al. Neutrophil gelatinase-associated lipocalin as a risk marker in cardiovascular disease. Clin Chem Lab Med. 2017;56(1):5-18. DOI:10.1515/cclm-2017-0120.

31. Katagiri M, Takahashi M, Doi K, et al. Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels. 2016;31(10):1595602. DOI:10.1007/s00380-015-0776-8.

32. Woitas RP, Scharnagl H, Kleber ME, et al. Neutrophil gelatinase-associated lipocalin levels are U-shaped in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study-Impact for mortality. PLoS One. 2017;12(2):e0171574. DOI:10.1371/journal.pone.0171574.

33. DeLeon-Pennell KY, Meschiari CA, Jung M, Lindsey ML. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog Mol Biol Transl Sci. 2017;147:75100. DOI:10.1016/bs.pmbts.2017.02.001.

34. Olejarz W, Łacheta D, Kubiak-Tomaszewska G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci. 2020;21(11):3946. DOI: 10.3390/ijms21113946.

35. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020;21(24):9739. DOI:10.3390/ijms21249739.

36. Wang X, Shi LZ. Association of matrix metalloproteinase-9 C1562T polymorphism and coronary artery disease: a meta-analysis. J Zhejiang Univ Sci B. 2014;15(3):256-63. DOI:10.1631/jzus.B1300088.

37. Zhang MM, Chang XW, Hao XQ, et al. Association between matrix metalloproteinase 9 C-1562T polymorphism and the risk of coronary artery disease: an update systematic review and meta-analysis. Oncotarget. 2017;9(10):9468-9479. DOI:10.18632/oncotarget.23293.

38. Dorecka M, Francuz T, Garczorz W, et al. The influence of elastin degradation products, glucose and atorvastatin on metalloproteinase-1, -2, -9 and tissue inhibitor of metalloproteinases-1, -2, -3 expression in human retinal pigment epithelial cells. Acta Biochim Pol. 2014;61(2):265-70. DOI:10.18388/abp.2014_1894.

39. Blum A. HMG-CoA reductase inhibitors (statins), inflammation, and endothelial progenitor cells-New mechanistic insights of atherosclerosis. Biofactors. 2014;40(3):295-302. DOI:10.1002/biof.1157.

Supplementary files


For citations:

Kovalskaya A.N., Duplyakov D.V. Biomarkers in assessing the vulnerability of atherosclerotic plaques: a narrative review. Rational Pharmacotherapy in Cardiology. 2023;19(3):282-288. (In Russ.) EDN: DVSIQI

Views: 171

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)