Rational Pharmacotherapy in Cardiology

Advanced search

Myocardial electroporation — an alternative to thermal methods of atrial fibrillation treatment


Atrial fibrillation is one of the most common cardiac arrhythmias. By all estimates, the number of patients with this arrhythmia will only increase. Currently, the main and most used methods for the treatment of atrial fibrillation are radiofrequency and cryo-balloon ablation. However, the accumulated experience of their use has revealed a number of shortcomings — the lack of long-term pulmonary vein isolation, as well as life-threatening procedure complications. Relatively recent foreign studies showed data on the use of an alternative method of influencing arrhythmogenic foci. The method is based on the use of non-thermal pulsed field ablation, which leads to the appearance of pores in cardiomyocytes and their necrosis, which causes a more stable electrical left atrial pulmonary vein isolation. The margins of the lesions in this exposure are usually very sharp with a narrow transition from normal tissue to tissue with the complete necrosis, while not damaging neighboring structures such as blood vessels, nerves and esophagus. At present, information published in the literature on the use of pulsed field ablation in various fields of medicine, including oncology and cardiology, is clearly not enough. The implementation of this method for the interventional treatment of cardiac arrhythmias is considered a promising direction and is the subject of research by many leading scientific groups around the world. The purpose of this review is to structure the most significant information on the use of pulsed field ablation, presented in the literature, to analyze its possibilities, effectiveness, and disadvantages.

About the Authors

E. A. Archakov
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Evgenii A. Archakov

R. E. Batalov
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Roman E. Batalov

M. S. Khlynin
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Mikhail S. Khlynin

A. V. Smorgon
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Andrey V. Smorgon

S. V. Popov
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Sergey V. Popov


1. Roth GA, Mensah GA, Johnson CO, et al; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982-3021. DOI:10.1016/j.jacc.2020.11.010.

2. Eshmatov OR, Batalov RE, Archakov EA, et al. Efficacy and safety of anticoagulant therapy in patients with various forms of atrial fibrillation after interventional treatment. The results of a three-year follow-up. Kardiologiia. 2022;62(8):19-26 (In Russ.) DOI:10.18087/cardio.2022.8.n2046.

3. Chavez P, Messerli FH, Casso Dominguez A, et al. Atrioesophageal fistula following ablation procedures for atrial fibrillation: systematic review of case reports. Open Heart. 2015;2(1):e000257. DOI:10.1136/openhrt-2015-000257.

4. Krassowska W. Effects of electroporation on transmembrane potential induced by defibrillation shocks. Pacing Clin Electrophysiol. 1995;18(9 Pt 1):1644-1660. DOI:10.1111/j.1540-8159.1995.tb06986.x.

5. du Pré BC, van Driel VJ, van Wessel H, et al. Minimal coronary artery damage by myocardial electroporation ablation. Europace. 2013;15(1):144-149. DOI:10.1093/europace/eus171.

6. Zager Y, Kain D, Landa N, et al. Optimization of Irreversible Electroporation Protocols for In-vivo Myocardial Decellularization. PLoS One. 2016;11(11): e0165475. DOI:10.1371/journal.pone.0165475.

7. Sugrue A, Vaidya VR, Livia C, et al. Feasibility of selective cardiac ventricular electroporation. PLoS One. 2020;15(2):e0229214. DOI:10.1371/journal.pone.0229214.

8. Kotnik T, Frey W, Sack M, et al. Electroporation-based applications in bio technology. Trends Biotechnol. 2015;33(8):480-488. DOI:10.1016/j.tibtech.2015.06.002.

9. Tekle E, Astumian RD, Chock PB. Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proc Natl Acad Sci USA. 1991;88(10):4230-4234. DOI:10.1073/pnas.88.10.4230.

10. Chang DC. Cell poration and cell fusion using an oscillating electric field. Biophys J. 1989;56(4):641-652. DOI:10.1016/S0006-3495(89)82711-0.

11. Neven K, van Driel V, van Wessel H, et al. Epicardial linear electroporation ablation and lesion size. Heart Rhythm. 2014;11(8):1465-1470. DOI:10.1016/j.hrthm.2014.04.031.

12. Neven K, van Driel V, van Wessel H, et al. Safety and feasibility of closed chest epicardial catheter ablation using electroporation. Circ Arrhythm Electro - physiol. 2014;7(5):913-919. DOI:10.1161/CIRCEP.114.001607.

13. Padmanabhan D, Naksuk N, Killu AK, et al. Electroporation of epicardial autonomic ganglia: Safety and efficacy in medium-term canine models. J Cardiovasc Electrophysiol. 2019;30(4):607-615. DOI:10.1111/jce.13860.

14. Onik G, Mikus P, Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat. 2007;6(4):295-300. DOI:10.1177/153303460700600405.

15. Lyu T, Wang X, Su Z, et al. Irreversible electroporation in primary and metastatic hepatic malignancies: A review. Medicine (Baltimore). 2017;96(17):e6386. DOI:10.1097/MD.0000000000006386.

16. Lavee J, Onik G, Mikus P, et al. A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. Heart Surg Forum. 2007;10(2):E162-E167. DOI:10.1532/HSF98.20061202.

17. Sugrue A, Vaidya V, Witt C, et al. Irreversible electroporation for catheter-based cardiac ablation: a systematic review of the preclinical experience. J Interv Card Electrophysiol. 2019;55(3):251-265. DOI:10.1007/s10840-019-00574-3.

18. Hunter DW, Kostecki G, Fish JM, et al. In Vitro Cell Selectivity of Reversible and Irreversible: Electroporation in Cardiac Tissue. Circ Arrhythm Electrophysiol. 2021;14(4):e008817. DOI:10.1161/CIRCEP.120.008817.

19. Ye X, Liu S, Yin H, et al. Study on Optimal Parameter and Target for PulsedField Ablation of Atrial Fibrillation. Front Cardiovasc Med. 2021;8:690092. DOI:10.3389/fcvm.2021.690092.

20. Koruth J, Kuroki K, Iwasawa J, et al. Preclinical Evaluation of Pulsed Field Ablation: Electrophysiological and Histological Assessment of Thoracic Vein Isolation. Circ Arrhythm Electrophysiol. 2019;12(12):e007781. DOI:10.1161/CIRCEP.119.007781.

21. Reddy VY, Koruth J, Jais P, et al. Ablation of Atrial Fibrillation With Pulsed Electric Fields: An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation. JACC Clin Electrophysiol. 2018;4(8):987-995. DOI:10.1016/j.jacep.2018.04.005.

22. Stewart MT, Haines DE, Verma A. et al. Intracardiac pulsed field ablation: Proof of feasibility in a chronic porcine model. Heart Rhythm. 2019;16(5):754-764. DOI:10.1016/j.hrthm.2018.10.030.

23. Reddy VY, Dukkipati SR, Neuzil P, et al. Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin Electrophysiol. 2021;7(5):614-627. DOI:10.1016/j.jacep.2021.02.014.

24. Ekanem E, Reddy VY, Schmidt B, et al. Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF). Europace. 2022;24(8):1256-1266. DOI:10.1093/europace/euac050.

Supplementary files


For citations:

Archakov E.A., Batalov R.E., Khlynin M.S., Smorgon A.V., Popov S.V. Myocardial electroporation — an alternative to thermal methods of atrial fibrillation treatment. Rational Pharmacotherapy in Cardiology. 2023;19(3):277-281. (In Russ.)

Views: 204

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)