Rational Pharmacotherapy in Cardiology

Advanced search

Pararenalfat Tissue: Rate of Pararenal Obesity and Relation with Anthropometric Indices of Obesity


Aim. To study a rate of excessive pararenal fat tissue (PRFT) thickness and its relationship with anthropometric obesity indices.
Material and methods. 372 patients (152 men and 220 women) were included in the study, the average age was 63.5±13.3 years. There were measured: height, weight, waist circumference (WC), hip circumference (HC), body mass index (BMI), WC/height ratio, sagittal abdominal diameter (SAD), body fat percentage (BFP), body surface area (BSA), body adiposity index (BAI) and visceral obesity index (VAI). All subjects underwent abdominal multispiral computed tomography. PRFT thickness was detected on a single slice at the level of the left renal vein.
Results. 27% of the examined group had BMI<25 kg/m2, 28% – excessive body mass, 45% – obesity. The median PRFT thickness was 1.61 (1.03; 2.46) cm. There were correlations between PRFT thickness and glucose (r=0,64, p<0,05) and uric acid (r=0,46, p<0,05) levels. The threshold of referential PRFT thickness was 1,91cm. The rate of pararenal obesity was 9,9% among those with normal body mass, 29,3% in excessive body mass, 66,1% – in 1 class obesity, 67,7% – in 2 class, and 90,1% – in 3 class. The correlation analysis revealed a significant positive correlation between the PRFT thickness and obesity indices with exception of VAI and BAI: with BMI (r=0.43, p<0.05), WC (r=0.57, p<0.05), SAD (r=0.58, p<0.05), BFP (r=0.48, p<0.05), WC/height ratio (r=0.46, p<0.05), and BSA (r=0.58, p<0.05).
Conclusion. Excessive PRFT may be detected isolated without any external anthropometric signs of obesity, wherein it is an active component of metabolic disorders typical for obesity. The most significant indices for the detection of pararenal obesity may be WC, SAD, and BSA.

About the Authors

V. I. Podzolkov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Valery I. Podzolkov 


A. E. Bragina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

 Anna E. Bragina 


K. K. Osadchiy
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

 Konstantin K. Osadchiy 



J. N. Rodionova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

 Julia N. Rodionova 


D. A. Bayutina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Darya А. Bayutina 




1. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13-27. DOI:10.1056/NEJMoa1614362.

2. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825-30. DOI:10.7326/0003-4819-158-11-201306040-00007.

3. Kambham N, Markowitz GS, Valeri AM, et al. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59(4):1498-509. DOI:10.1046/j.1523-1755.2001.0590041498.x.

4. Kang SH, Cho KH, Park JW, et al. Association of visceral fat area with chronic kidney disease and metabolic syndrome risk in the general population: analysis using multi-frequency bioimpedance. Kidney Blood Press Res. 2015;40(3):223-30. DOI:10.1159/000368498.

5. Thoenes M, Reil JC, Khan BV et al. Abdominal obesity is associated with microalbuminuria and an elevated cardiovascular risk profile in patients with hypertension. Vasc Health Risk Manag. 2009;5(4):577-85. DOI:10.2147/vhrm.s5207.

6. Neeland IJ, Ross R, Després JP, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715-25. DOI:10.1016/S2213-8587(19)30084-1.

7. Bragina AE, Tarzimanova AI, Osadchiy KK, et al. Ectopic fat depots: physiological role and impact on cardiovascular disease continuum. Russian Open Medical Journal. 2022;11:e0104. DOI:10.15275/rusomj.2022.0104.

8. Liu BX, SunW, Kong XQ. Perirenal fat: a unique fat pad and potential target for cardiovascular disease. Angiology. 2018;70(7):584-93. DOI:10.1177/0003319718799967.

9. Foster MC, Hwang SJ, Porter SA, et al. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58(5):784-90. DOI:10.1161/HYPERTENSIONAHA.111.175315.

10. Geraci G, Zammuto MM, Mattina A, et al. Para-perirenal distribution of body fat is associated with reduced glomerular filtration rate regardless of other indices of adiposity in hypertensive patients. J Clin Hypertens (Greenwich). 2018;20(10):1438-46. DOI:10.1111/jch.13366.

11. Shen FC, Cheng BC, Chen JF. Peri-renal fat thickness is positively associated with the urine albumin excretion rate in patients with type 2 diabetes. Obes Res Clin Pract. 2020;14(4):345-9. DOI:10.1016/j.orcp.2020.06.006.

12. Bragina AE, Osadchiy KK, Rodionova JN, et al. Pararenal Fat and Renal Dysfunction in Patients without Significant Cardiovascular Disease. Am J Nephrol. 2022;53:416-22. DOI:10.1159/000522311.

13. Diagnosis, treatment, prevention of obesity and associated diseases. National clinical guidelines [cited 2022 Jan 10]. Available from: (In Russ.)

14. Sjöström CD, Lissner L, Sjöström L. Relationships between changes in body composition and changes in cardiovascular risk factors: the SOS Intervention Study. Swedish Obese Subjects. Obes Res. 1997;5(6):519-30. DOI:10.1002/j.1550-8528.1997.tb00572.x.

15. Si S, Tewara MA, Ji X, et al. Body surface area, height, and body fat percentage as more sensitive risk factors of cancer and cardiovascular disease. Cancer Med. 2020;9(12):4433-46. DOI:10.1002/cam4.3076.

16. Amato MC, Pizzolanti G, Torregrossa V, et al. Visceral Adiposity Index (VAI) Is Predictive of an Altered Adipokine Profile in Patients with Type 2 Diabetes. Plos One. 2014;9(3):e91969. DOI:10.1371/journal.pone.0091969.

17. Bergman RN, Stefanovski D, Buchanan TA, et al. A better index of body adiposity. Obesity (Silver Spring). 2011;19(5):1083-9. DOI:10.1038/oby.2011.38.

18. Kobalava ZD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786 (In Russ.) DOI:10.15829/1560-4071-2020-3-3786.

19. Goldenberg L, Saliba W, Hayeq H, et al. The impact of abdominal fat on abdominal aorta calcification measured on non-enhanced CT. Medicine (Baltimore). 2018;97(49):e13233. DOI:10.1097/MD.0000000000013233.

20. Bobkova IN, Gussaova SS, Stavrovskaya EV, Struve A.V. Nephrological aspects of surgical weight correction in morbid obesity. Terapevticheskii Arkhiv. 2018;90(6):98-104. DOI:10.26442/terarkh201890698-104 (In Russ.) DOI:10.26442/terarkh201890698-104.

21. Montani JP, Carroll JF, Dwyer TM, et al. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Dis. 2004;28 (Suppl. 4):S58-65. DOI:10.1038/sj.ijo.0802858.

22. Liu Y, Wang L, Luo M, et al. Inhibition of PAI-1 attenuates perirenal fat inflammation and the associated nephropathy in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab. 2019;316(2):E260-E267. DOI:10.1152/ajpendo.00387.2018.

23. Axelsson J, Moller HJ, Witasp A, et al. Changes in fat mass correlate with changes in soluble sCD163, a marker of mature macrophages, in patients with CKD. Am J Kidney Dis 2006;48(6):916-25. DOI:10.1053/j.ajkd.2006.08.022.

24. Thanassoulis G, Massaro JM, Hoffmann U, et al. Prevalence, distribution, and risk factor correlates of high pericardial and intrathoracic fat depots in the Framingham heart study. Circ Cardiovasc Imaging. 2010;3(5):559-66. DOI:10.1161/CIRCIMAGING.110.956706.

25. Kramer H, Gutiérrez OM, Judd SE, et al. Waist Circumference, Body Mass Index, and ESRD in the REGARDS (Reasons for geographic and racial differences in stroke) study. Am J Kidney Dis. 2016;67(1):62‐9. DOI:10.1053/j.ajkd.2015.05.023.

26. He Y, Li F, Wang F, et al. The association of chronic kidney disease and waist circumference and waist‐to‐height ratio in Chinese urban adults. Medicine (Baltimore). 2016;95(25):e3769. DOI:10.1097/MD.0000000000003769.

27. Oh H, Quan SA, Jeong JY, et al. Waist circumference, not body mass index, is associated with renal function decline in Korean population: Hallym aging study. PLoS One. 2013;8(3):e59071. DOI:10.1371/journal.pone.0059071.

28. Ricci MA, Scavizzi M, Ministrini S, et al. Morbid obesity and hypertension: The role of perirenal fat. J Clin Hypertens (Greenwich). 2018;20(10):1430-7. DOI:10.1111/jch.13370.

29. Nevill AM, Stewart AD, Olds T, Holder R. Relationship between adiposity and body size reveals limitations of BMI. Am J Phys Anthropol. 2006;129(1):151‐6. DOI:10.1002/ajpa.20262.

30. Gómez‐Ambrosi J, Silva C, Galofré JC, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2012;36(2):286‐94. DOI:10.1038/ijo.2011.100.

31. Yang S, Li M, Chen Y, et al. Comparison of the Correlates Between Body Mass Index, Waist Circumference, Waist-to-Height Ratio, and Chronic Kidney Disease in a Rural Chinese Adult Population. J Ren Nutr. 2019;29(4):302-9.e1. DOI:10.1053/j.jrn.2018.10.008.

32. Chen X, Liu Y, Sun X, et al. Comparison of body mass index, waist circumference, conicity index, and waist-to-height ratio for predicting incidence of hypertension: the rural Chinese cohort study. J Hum Hypertens. 2018;32(3):228-35. DOI:10.1038/s41371-018-0033-6.


For citations:

Podzolkov V.I., Bragina A.E., Osadchiy K.K., Rodionova J.N., Bayutina D.A. Pararenalfat Tissue: Rate of Pararenal Obesity and Relation with Anthropometric Indices of Obesity. Rational Pharmacotherapy in Cardiology. 2022;18(5):516-521. (In Russ.)

Views: 526

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)