Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Genetic Polymorphism of beta1-adrenergic Receptors and the Effect on the Clinical Efficacy of beta-adrenoblockers

https://doi.org/10.20996/1819-6446-2021-10-13

Full Text:

Abstract

Beta-adrenergic blockers are a valuable class of cardiovascular drugs and are widely used in the treatment of arterial hypertension (AH), coronary heart disease, chronic heart failure (CHF), cardiac arrhythmias, significantly improving the prognosis of patients. However, the clinical efficacy of betablockers is largely dependent on the genetic polymorphism of beta1-adrenergic receptors (ADRB1). The aim of the review was a systematic analysis of scientific data from pharmacogenetic studies on the role of beta1-adrenergic receptor polymorphism in the clinical efficacy of beta-blockers in the treatment of hypertension, chronic heart failure, and atrial fibrillation. The results of clinical trials and meta-analyzes were used. Of greatest importance is the genetic polymorphism of beta1-adrenergic receptors of two loci – Arg389Gly and Ser49Gly; the frequency of occurrence of variant and less functionally active alleles Gly389 and Gly49 in Europeans reaches 27% and 15%. The variant Gly389 allele has reduced functional activity and carriers have a weak response to the use of beta-blockers. In carriers of variant alleles Gly389 and Gly49 a reduced hypotensive effect on the use of beta-blockers was observed, and in studies of long-term efficacy, carriage of variant alleles was accompanied by an increase in the frequency and risk of unfavorable outcomes of hypertension. In pharmacogenetic studies, a reduced effect of the effect on myocardial remodeling in patients with CHF for beta-blockers in carriers of the variant Gly389 allele were confirmed. According to two meta-analyzes of trials on use of beta-blockers in patients with CHF, the frequency of increased left ventricle ejection fraction was significantly higher in carriers of the wild Arg389Arg gene type (risk ratio=1.83, p=0,001). In contrast, in atrial fibrillation, the frequency of rhythm control with beta-blockers was achieved better in the presence of the variant allele Gly389 with “loss of function”. Another polymorphic Gly49 allele plays a role in desensitization and down-regulation of beta1-receptor activity, although clinically this effect has been less obvious and contradictory. However, in studies, a more pronounced clinical effect of beta-blockers was observed in carriers of the wild genotype Ser49Ser, as well as in carriers of the haplotype Ser49Ser/Arg389Arg. Thus, genetic polymorphism ADRB1 may be another important predictor of the effectiveness of beta-blockers in clinical practice, which must be taken into account in the treatment of cardiovascular diseases.

About the Authors

V. N. Larina
Interregional Public Organization Association of Clinical Pharmacologists
Russian Federation

Vera N. Larina

Volgograd



M. V. Leonova
Pirogov Russian National Research Medical University
Russian Federation

Marina V. Leonova

Moscow



References

1. Hollenberg NK. The role of beta-blockers as a cornerstone of cardiovascular therapy. Am J Hypertens. 2005;18(12 Pt 2):165S-168S. DOI:10.1016/j.amjhyper.2005.09.010.

2. Nonen S, Azuma J, Fujio Y. Pharmacogenomics of adrenergic receptors; from hypertension to heart failure. Open Hypertens J. 2010;3:14-20. DOI:10.2174/1876526201003010014.

3. Moore JD, Mason DA, Green SA, et al. Racial differences in the frequencies of cardiac β1-adrenergic receptor polymorphisms: analysis of c145A>G and c1165G>C. Hum Mut 1999;14(3):271. DOI:10.1002/(SICI)1098-1004(1999)14:3<271::AID-HUMU14>3.0.CO;2-Q.

4. Mason DA, Moore JD, Green SA, Liggett SB. A gain-of-function polymorphism in a G-protein coupling domain of the human β1-adrenergic receptor. J Biol Chem. 1999;274(18):12670-4. DOI:10.1074/jbc.274.18.12670.

5. Bruck H, Leineweber K, Temme T, et al. The Arg389Gly beta1-adrenoceptor polymorphism and catecholamine effects on plasma-renin activity. JACC. 2005;46(11):2111-5. DOI:10.1016/j.jacc.2005.08.041.

6. Levin MC, Marullo S, Muntaner O, et al. The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem. 2002;277(34):30429-35. DOI:10.1074/jbc.M200681200.

7. O'Shaughnessy KM, Fu B, Dickerson C, et al. The gain-of-function G389R variant of the beta1-adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. Clin Sci (Lond). 2000;99(3):233-8. DOI:10.1042/cs0990233.

8. Sofowora GG, Dishy V, Muszkat M, et al. A common β1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to β-blockade. Clin Pharmacol Ther. 2003;73(4):366-71. DOI:10.1016/s0009-9236(02)17734-4.

9. Liu J, Liu ZQ, Tan ZR, et al. Gly389Arg polymorphism of β1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther. 2003;74(4):372-9. DOI:10.1067/S0009-9236(03)00224-8.

10. Johnson JA, Zineh I, Puckett BJ, et al. Beta1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74(1):44-52. DOI:10.1016/S0009-9236(03)00068-7.

11. Liu J, Liu ZQ, Yu BN, et al. Вeta1-adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80(1):23-32. DOI:10.1016/j.clpt.2006.03.004.

12. Sehrt D, Meineke I, Tzvetkov M, et al. Carvedilol pharmacokinetics and pharmacodynamics in relation to CYP2D6 and ADRB pharmacogenetics. Pharmacogenomics. 2011;12(6):783-95. DOI:10.2217/pgs.11.20.

13. Si D, Wang J, Xu Y, et al. Association of common polymorphisms in β1-adrenergic receptor with antihypertensive response to carvedilol. J Cardiovasc Pharmacol. 2014;64(4):306-9. DOI:10.1097/FJC.0000000000000119.

14. Suonsyrjä T, Donner K, Hannila-Handelberg T, et al. Common genetic variation of beta1- and beta2- adrenergic receptor and response to four classes of antihypertensive treatment. Pharmacogenet Genomics. 2010;20(5):342-5. DOI:10.1097/FPC.0b013e328338e1b8.

15. Pacanowski MA, Gong Y, Cooper-DeHoff RM, et al., on behalf of For the INVEST Investigators. β- adrenergic receptor gene polymorphisms and β-blocker treatment outcomes in hypertension. Clin Pharmacol Ther. 2008; 84(6):715-21. DOI:10.1038/clpt.2008.139.

16. Magvanjav O, McDonough CW, Gong Y, et al., NINDS SiGN (Stroke Genetics Network). Pharmacogenetic associations of β1-adrenergic receptor polymorphisms with cardiovascular outcomes in the SPS3 Trial (Secondary Prevention of Small Subcortical Strokes). Stroke. 2017;48(5):1337-43. DOI:10.1161/STROKEAHA.116.015936.

17. Borjesson M, Magnusson Y, Hjalmarson A, Andersson B. A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J. 2000;21(22):1853-8. DOI:10.1053/euhj.1999.

18. Magnusson Y, Levin MC, Eggertsen R, et al. Ser49Gly of beta1-adrenergic receptor is associated with effective beta-blocker dose in dilated cardiomyopathy. Clin Pharmacol Ther. 2005;78(3):221-31. DOI:10.1016/j.clpt.2005.06.004.

19. White HL, de Boer RA, Maqbool A, et al. An evaluation of the beta1-adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail. 2003;5(4):463- 8. DOI:10.1016/s1388-9842(03)00044-8.

20. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA. 2006;103(30):11288-93. DOI:10.1073/pnas.0509937103.

21. Fiuzat M, Neely ML, Starr AZ, et al. Association between adrenergic receptor genotypes and betablocker dose in heart failure patients: analysis from the HF-ACTION DNA substudy. Eur J Heart Fail. 2013;15(3):258-66. DOI:10.1093/eurjhf/hfs175.

22. Parikh KS, Fiuzat M, Davis G, et al. Dose-Response of Beta-Blockers in Adrenergic Receptor Polymorphism Genotypes. Circ Genom Precis Med. 2018;11(8):e002210. DOI:10.1161/CIRCGEN.117.002210.

23. Kang S, Hong X, Ruan CW, et al. Effects of GRK5 and ADRB1 polymorphisms influence on systolic heart failure. J Transl Med. 2015;13:44. DOI:10.1186/s12967-015-0402-7.

24. Terra SG, Hamilton KK, Pauly DF, et al. Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics. 2005;15(4):227-34. DOI:10.1097/01213011-200504000-00006.

25. Terra SG, Pauly DF, Lee CR, et al. Вeta-аdrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther. 2005;77(3):127-37. DOI:10.1016/j.clpt.2004.10.006.

26. Mialet PJ, Rathz DA, Petrashevskaya NN, et al. β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med. 2003;9(10):1300-5. DOI:10.1038/nm930.

27. Molenaar P, Chen L, Semmler AB, et al. Human heart beta-adrenoceptors: beta1-adrenoceptor diversification through 'affinity states' and polymorphism. Clin Exp Pharmacol Physiol. 2007;34(10):1020-8. DOI:10.1111/j.1440-1681.2007.04730.x.

28. Chen L, Meyers D, Javorsky G, et al. Arg389Gly-beta1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenet Genomics. 2007;17(11):941-9. DOI:10.1097/FPC.0b013e3282ef7354.

29. Metra M, Covolo L, Pezzali N, et al. Role of beta-adrenergic receptor gene polymorphisms in the longterm effects of beta-blockade with carvedilol in patients with chronic heart failure. Cardiovasc Drugs Ther. 2010;24(1): 9-60. DOI:10.1007/s10557-010-6220-5.

30. de Groote P, Helbecque N, Lamblin N, et al. Association between beta-1 and beta-2 adrenergic receptor gene polymorphisms and the response to beta-blockade in patients with stable congestive heart failure. Pharmacogenet Genomics. 2005;15(3):137-42. DOI:10.1097/01213011-200503000-00001.

31. Liu WN, Fu KL, Gao HY, et al. β1 adrenergic receptor polymorphisms and heart failure: a meta-analysis on susceptibility, response to β-blocker therapy and prognosis. PLoS One. 2012;7(7):e37659. DOI:10.1371/journal.pone.0037659.

32. Muthumala A, Drenos F, Elliott PM, Humphries SE. Role of β adrenergic receptor polymorphisms in heart failure: Systematic review and meta-analysis. Eur J Heart Fail. 2008;10(1):3-13. DOI:10.1016/j.ejheart.2007.11.008.

33. Parvez B, Chopra N, Rowan S, et al. A common β1-adrenergic receptor polymorphism predicts favorable response to rate-control therapy in atrial fibrillation. J Am Coll Cardiol. 2012;59(1):49-56. DOI:10.1016/j.jacc.2011.08.061.


For citation:


Larina V.N., Leonova M.V. Genetic Polymorphism of beta1-adrenergic Receptors and the Effect on the Clinical Efficacy of beta-adrenoblockers. Rational Pharmacotherapy in Cardiology. 2021;17(5):752-760. (In Russ.) https://doi.org/10.20996/1819-6446-2021-10-13

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)