Rational Pharmacotherapy in Cardiology

Advanced search

Impact of Gut Microbiota on the Risk of Cardiometabolic Diseases Development

Full Text:


Obesity is a multifactorial disease that leads to excessive adipose tissue accumulation, mainly visceral fat. Importance and prevalence of obesity has increased significantly in recent decades all over the world. Until now, the pandemic of obesity has been associated more to lifestyle changes: excessive eating and low physical activity. In recent years, special attention has been paid to studying of composition and functions of intestinal microbiota as major factor in development of obesity and related comorbidities, such as hypertension, cardiac ischemia, heart failure and others. It is proved that gut microbiota affects extraction, accumulation and consumption of energy derived from food, lipid metabolism and immune response. It is also revealed that composition of the microbiota is different in thin and obese people. Thus, study of the relationship between intestinal microbiota composition and risk factors for cardiovascular diseases, in particular obesity, is an actual task. The purpose of this review is analyzing of literature about assessment of relationship between composition and functions of intestinal microbiota in the diagnostics, prevention and treatment of obesity and cardiovascular diseases.

About the Authors

L. E. Vasilyeva
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Lyubov E. Vasilyeva


O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Oxana M. Drapkina

Moscow, eLibrary SPIN 4456-1297


1. Go AS, Mozaffarian D, Roger VL, et al. American Heart Association Statistics Committee and Stroke Sta tistics Subcommittee. Executive summary: heart disease and stroke statistics—2014 update: a report from the American heart association. Circulation. 2014;129(3):399-410. DOI:10.1161/01.cir.0000442015.53336.12.

2. Seganfredo FB, Blume CA, Moehlecke M, et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev. 2017;18(8):832-51. DOI:10.1111/obr.12541.

3. Boulangé CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obe-sity, and metabolic disease. Genome Med. 2016;8(2):42. DOI:10.1186/s13073-016-0303-2.

4. Stamler J, Rose G, Stamler R, et al. INTERSALT study findings. Public health and medical care implications. Hypertension. 1989;14(5):570-7. DOI:10.1161/01.hyp.14.5.570.

5. Muromtseva GA, Kontsevaya AV, Konstantinov VV, et al. Prevalence of risk factors for non-communicable diseases in the Russian population in 2012-2013. ESSE-RF research results. Cardio-vascular Therapy and Prevention. 2014;13(6):4-11 (In Russ.) DOI:10.15829/1728-8800-2014-6-4-11.

6. Drapkina OM, Korneeva ON. Gut microbiota and obesity. Pathogenetic relationships and ways to normalize the intestinal microflora. Ter Arkhiv. 2016;88(9):135-42 (In Russ.) DOI:10.17116/terarkh2016889135-142.

7. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766-81. DOI:10.1016/S0140-6736(14)60460-8.

8. Tappy L. Metabolic consequences of overfeeding in humans. Curr Opin Clin Nutr Metab Care. 2004;7(6):623-8. DOI:10.1097/00075197-200411000-00006.

9. Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279-88. DOI:10.4161/gmic.19625.

10. Zhi C, Huang J, Wang J, et al. Connection between gut microbiome and the development of obesity. Eur J Clin Microbiol Infect Dis. 2019;36(11):1987-98. DOI:10.1007/s10096-019-03623-x.

11. Diagnostics, treatment, prevention of obesity and associated diseases. National Clinical Guide-lines (2017). [cited by Nov 10, 2019]. Available from: (In Russ.)

12. Cardiovascular prevention 2017. National guidelines. Russian Journal of Cardiology. 2018;(6):7- 122 (In Russ.) DOI:10.15829/1560-4071-2018-6-7-122.

13. Aprahamian TR, Sam F. Adiponectin in cardiovascular inflammation and obesity. Int J Inflam. 2011;376909. DOI:10.4061/2011/376909.

14. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321. DOI:10.3390/ijms18061321.

15. Farr OM, Gavrieli A, Mantzoros CS. Leptin applications in 2015: what have we learned about leptin and obesity? CurrOpin Endocrinol Diabetes Obes. 2015;22(5):353-9. DOI:10.1097/MED.0000000000000184.

16. Bell BB, Rahmouni K. Leptin as a Mediator of Obesity-Induced Hypertension. Curr Obes Rep. 2016;5(4):397-404. DOI:10.1007/s13679-016-0231-x.

17. Joao AL, Reis F, Fernandes R. The incretin system ABCs in obesity and diabetes—novel therapeutic strategies for weight loss and beyond. Obes Rev. 2016;17(7):553-72. DOI:10.1111/obr.12421.

18. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. DOI:10.1038/nature09922.

19. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regu-lates fat storage. Proc Natl Acad Sci USA. 2004;101(44):15718-23. DOI:10.1073/pnas.0407076101.

20. Kindleysides S, Kruger R, Douwes J, et al. Predictors Linking Obesity and the Gut Microbi-ome (the PROMISE Study): Protocol and Recruitment Strategy for a Cross-Sectional Study on Path-ways That Affect the Gut Microbiome and Its Impact on Obesity. JMIR Res Protoc. 2019; 8(8):e14529. DOI:10.2196/14529.

21. Miele L, Giorgio V, Alberelli MA, et al. Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Curr Cardiol Rep. 2015;17(12):120. DOI:10.1007/s11886-015-0671-z.

22. Cavalcante-Silva LHA, Galvão JGFM, Silva JSF, et al. Obesity-Driven Gut Microbiota In-flammatory Pathways to Metabolic Syndrome. Front. Physiol. 2015;6:341. DOI:10.3389/fphys.2015.00341.

23. Al-Assal K, Martinez AC, Torrinhas RS, et al. Gut microbiota and obesity. Clinical Nutrition Experimental. 2018;20:60-4. DOI:10.1016/j.yclnex.2018.03.001.

24. Olsen GJ, Lane DJ, Giovannoni SJ, et al. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337-65. DOI:10.1146/annurev.mi.40.100186.002005.

25. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. DOI:10.1038/nature09944.

26. Hsiao WW, Fraser-Liggett CM. Human Microbiome Project-paving the way to a better under-standing of ourselves and our microbes. Drug Discov Today. 2009;14(7-8):331-3. DOI:10.1016/j.drudis.2009.03.001.

27. Wu GD, Chen J, Hoffmann C, Bittinger K. Linking long-term dietary patterns with gut micro-bial enterotypes. Science. 2011;334(6052):105-8. DOI:10. 1126/science.1208344.

28. Mitev K, Taleski V. Association between the Gut Microbiota and Obesity. Open Access Maced J Med Sci. 2019;7(12):2050-6. DOI:10.3889/oamjms.2019.586.

29. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4. DOI:10.1038/nature07540.

30. Ley RE, Backhed F, Turnbaugh PJ, et. al. Obesity alters gut microbial ecology. Proc Nat Acad Sci. USA. 2005;102(31):11070-5. DOI:10.1073/pnas.0504978102.

31. Ding S, Chi M. M, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal in-flammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 2010;5(8):e12191. DOI:10.1371/journal.pone.0012191.

32. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with in-creased capacity for energy harvest. Nature. 2006;444(7122):1027-31. DOI:10.1038/nature05414.

33. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associat-ed with obesity. Nature. 2006; 444(7122):1022-3. DOI:10.1038/4441022a.

34. Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012;7(1):91-109. DOI:10.2217/fmb.11.142.

35. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with met-abolic markers. Nature. 2013;500(7464):541-6. DOI:10.1038/nature12506.

36. Karlsson F, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498(7452):99-103. DOI:10.1038/nature12198.

37. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-5. DOI:10.1038/oby.2009.167.

38. Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147-62. DOI:10.1007/s00018-015-2061-5.

39. Gérard P, Bernalier-Donadille A. Les fonctions majeures du microbiote intestinal. Cahiers de Nutrition et de Diététique. 2007;42:S28-36. DOI:10.1016/S0007-9960(07)91318-8.

40. Nazli A, Yang PC, Jury J, et al. Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol. 2004;164(3):947-57. DOI:10.1016/S0002-9440(10)63182-3.

41. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in aetiology of obesity: proposed mechanisms and review of literature. J Obes. 2016;2016:7353642. DOI:10.1155/2016/7353642.

42. Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on in-testinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145(2):396-406.e1-10. DOI:10.1053/j.gastro.2013.04.056.

43. Yang BG, Hur KY, Lee MS. Alterations in Gut Microbiota and Immunity by Dietary Fat. Yonsei Med J. 2017;58(6):1083. DOI:10.3349/ymj.2017.58.6.1083.

44. De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84-96. DOI:10.1016/j.cell.2013.12.016.

45. López M. EJE PRIZE 2017: hypothalamic AMPK: a golden target against obesity? Eur J En-docrinol. 2017;176(5):R235-46. DOI:10.1530/EJE-16-0927.

46. Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organ-ism. Int J Obes (Lond). 2008;32 suppl 4:S7-S12. DOI:10.1038/ijo.2008.116.

47. Pindjakova J, Sartini C, Lo Re O, et al. Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Front Microbiol. 2017;8:1157. DOI:10.3389/fmicb.2017.01157.

48. Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol. 1996;4(11):430-5. DOI:10.1016/0966-842x(96)10057-3.

49. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin re-sistance. Diabetes. 2007;56(7):1761-72. DOI:10.2337/db06-1491.

50. Kashtanova DA, Popenko AS, Tkacheva ON, Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition. 2016;32(6):620-7. DOI:10.1016/j.nut.2015.12.037..

51. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut micro-biota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228-31. DOI:10.1126/science.1179721.

52. Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol.2008;8(12):923-34. DOI:10.1038/nri2449.

53. Yang T, Santisteban M.M, Rodriguez V, et. al. Gut dysbiosis is linked to hypertension. Hy-pertension.2015;65(6):1331-40. DOI:10.1161/HYPERTENSIONAHA.115.05315.

54. Qi Y, Aranda JM, Rodriguez V, et al. Impact of antibiotics on arterial blood pressure in a pa-tient withresistant hypertension - A case report. Int J Cardiol. 2015;201:157-8. DOI:10.1016/j.ijcard.2015.07.078.

55. Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110(11):4410-15. DOI:10.1073/pnas.1215927110.

56. Pluznick JL. Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Renal Physiol. 2013;305(4):F439-44. DOI:10.1152/ajprenal.00252.2013.

57. Gomez-Guzman M, Toral M, Romero M, et al. Antihypertensive effects of probiotics lactoba-cillus strains in spontaneously hypertensive rats. Mol Nutr Food Res. 2015;59(11):2326-36. DOI:10.1002/mnfr.201500290.

58. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64(4):897-903. DOI:10.1161/HYPERTENSIONAHA.114.03469.

59. Caesar R, Fak F, Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med. 2010;268(4):320-8. DOI:10.1111/j.1365-2796.2010.02270.x.

60. Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an al-tered gut metagenome. Nat Commun. 2012;3:1245. DOI:10.1038/ncomms2266.

61. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutri-ent in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-85. DOI:10.1038/nm.3145.

62. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575-84. DOI:10.1056/NEJMoa1109400.

63. Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarc-tion in rats. FASEB J. 2012;26(4):1727-35. DOI:10.1096/fj.11-197921.

64. Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hyper-trophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491- 9. DOI:10.1161/CIRCHEARTFAILURE.113.000978.

65. Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561-9. DOI:10.1016/j.jacc.2007.07.016.

66. Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart fail-ure: A prospective cohort study. Lancet. 1999;353(9167):1838-42. DOI:10.1016/S0140-6736(98)09286-1.

67. Sandek A, Swidsinski A, Schroedl W, et al. Intestinal blood flow in patients with chronic heart failure: A link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardi-ol. 2014;64(11):1092-102. DOI:10.1016/j.jacc.2014.06.1179.

68. Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4(3):220-7. DOI:10.1016/j.jchf.2015.10.009.

69. Organ CL, Otsuka H, Bhushan S, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314. DOI:10.1161/CIRCHEARTFAILURE.115.002314.

70. Estruch R, Ros E, Salas-Salvado J, et al. Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med. 2013;368(14):1279-90. DOI:10.1056/NEJMoa1200303.

71. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-63. DOI:10.1038/nature12820.

72. Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964-77. DOI:10.1161/CIRCULATIONAHA.116.024545.

73. Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol. 2009;587(pt 17):4169-74. DOI:10.1113/jphysiol.2009.176370.

74. Simon MC, Strassburger K, Nowotny B, et al. Intake of lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: A proof of concept. Diabetes Care. 2015;38(10):1827-34. DOI:10.2337/dc14-2690.

75. Karlsson C, Ahrne S, Molin G, et al. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: A randomized controlled trial. Atherosclerosis. 2010;208(1):228-33. DOI:10.1016/j.atherosclerosis.2009.06.019.

76. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374-83. DOI:10.1007/s00125-007-0791-0.

77. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009;89(6):1751-9. DOI:10.3945/ajcn.2009.27465.

78. Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775-86. DOI:10.2337/db11-0227.

79. Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. J Crohns Colitis. 2014;8(12):1569-81. DOI:10.1016/j.crohns.2014.08.006.

80. Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290(9):5647-60. DOI:10.1074/jbc.M114.618249.

81. De Leon LM, Watson JB, Kelly CR. Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent clostridium difficile infection. Clin Gastroenterol Hepatol. 2013;11(8):1036-8. DOI:10.1016/j.cgh.2013.04.045. Rational Pharmacotherapy in Cardiology 2021;17(5) / Рациональная Фармакотерапия в Кардиологии 2021;17(5) 751

For citation:

Vasilyeva L.E., Drapkina O.M. Impact of Gut Microbiota on the Risk of Cardiometabolic Diseases Development. Rational Pharmacotherapy in Cardiology. 2021;17(5):743-751. (In Russ.)

Views: 76

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)