Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Endothelial Microvascular Dysfunction and Its Relationship with Haptoglobin Levels in Patients with Different Phenotypes of Chronic Heart Failure

https://doi.org/10.20996/1819-6446-2021-10-05

Full Text:

Abstract

Aim. To study the relationship between the level of haptoglobin and the main indicators of microcirculation (MC) in patients with different phenotypes of chronic heart failure (CHF).

Materials and methods. Patients with different phenotypes of functional class II-IV chronic heart failure according to NYHA (n=80) underwent a general clinical examination, determination of the serum haptoglobin level by enzyme-linked immunosorbent assay, as well as an assessment of the MC state on the medial surface of the upper third of the leg by laser Doppler flowmetry (LDF).

Results. Patients with CHF included patients with preserved left ventricular ejection fraction (HFpEF; n=27, intermediate ejection fraction (HFmrEF; n=25) and reduced ejection fraction (HFrEF; n=28). The median value of haptoglobin in the HFpEF group was 1387.6 [ 747.5; 1946.9] mg/l, in the HFmrEF group was 1583.4 [818.9; 2201.4] mg/l, in the HFrEF group was 968.5 [509.5; 1324.4] mg/l. Correlation analysis revealed statistically significant relationships between haptoglobin and the amplitudes of the endothelial frequency range (Ae) in the groups of HFmrEF (r=-0.628, 95% confidence interval [CI] -0.256; -0.825, p=0.003) and HFrEF (r=-0.503, 95% CI -0.089; -0.803, p=0.02). A negative relationship between the haptoglobin level and Kv and σ was revealed, as well as a formula for calculating the value of haptoglobin was obtained, which is predicted on the basis of the amplitude index of the endothelial frequency range: [haptoglobin]=1787-(4053×Ae).

Conclusion. The multifactorial effect of haptoglobin is realized in the central and peripheral mechanisms of MC regulation. Low values of haptoglobin in blood plasma should be considered as a potential marker for the development of complications and used in a comprehensive assessment of the state of patients with CHF. Evaluation of the diagnostic and prognostic significance of haptoglobin, especially in patients with HFmrEF, requires further study.

About the Authors

V. I. Podzolkov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Valery I. Podzolkov

Moscow, eLibrary SPIN 8683-2155



N. A. Dragomiretskaya
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Natalia A. Dragomiretskaya

Moscow, eLibrary SPIN 9484-6498



I. G. Beliaev
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Iiuriy G. Beliaev

Moscow, eLibrary SPIN 3936-8409



Ju. S. Kucherova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Julia S. Kucherova

Moscow



A. V. Kazadaeva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Anna V. Kazadaeva

Moscow



References

1. Mareev VYu, Fomin IV, Ageev FT, et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(6S):8- 158 (In Russ.) DOI:10.18087/cardio.2475.

2. Murphy SP, Kakkar R, McCarthy CP, Januzzi JL Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(11):1324-40. DOI:10.1016/j.jacc.2020.01.014.

3. Polonsky M, Gayle MF. Existence dans le plasma sanguine d'une substance activant enaction peroxydasque de hemoglobine. C R Soc Biol. 1938;129:457-461.

4. Andersen CBF, Stoedkilde K, Sæderup KL, et al. Haptoglobin. Antioxid Redox Signal. 2017; 26(14):814- 31. DOI: 10.1089/ars.2016.6793.

5. Maffei M, Barone I, Scabia G, Santini F. The Multifaceted Haptoglobin in the Context of Adipose Tissue and Metabolism. EndocrRev. 2016;37(4):403-16. DOI:10.1210/er.2016-1009.

6. Levy AP, Asleh R, Blum S, Levy NS, et al. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010;12(2):293-304. DOI: 10.1089/ars.2009.2793.

7. Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid Med Cell Longev. 2013;213:523652. DOI:10.1155/2013/523652.

8. Tamara S, Franc V, Heck AJR. A wealth of genotype-specific proteoforms fine-tunes hemoglobin scavenging by haptoglobin. Proc Natl Acad Sci USA. 2020; 117(27): 15554-64. DOI:10.1073/pnas.2002483117.

9. Kristiansen M, Graversen JH, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198-201. DOI:10.1038/35051594.

10. Schaer DJ, Vinchi F, Ingoglia G, et al. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol. 2014;5:415. DOI:10.3389/fphys.2014.00415.

11. Buehler PW, Vallelian F, Mikolajczyk MG, et al. Structural stabilization in tetrameric or polymeric hemoglobin determines its interaction with endogenous antioxidant scavenger pathways. Antioxid Redox Signal. 2008;10(8):1449-62. DOI:10.1089/ars.2008.2028.

12. MacKellar M, Vigerust DJ. Role of haptoglobin in health and disease: a focus on diabetes. Clin Diabetes. 2016;34(3):148-57. DOI:10.2337/diaclin.34.3.148.

13. Pontone G, Andreini D, Guaricci AI, et al. Association between haptoglobin phenotype and microvascular obstruction in patients with STEMI: a cardiac magnetic resonance study. JACC Cardiovasc Imaging. 2019;12(6):1007-17. DOI:10.1016/j.jcmg.2018.03.004.

14. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. DOI:10.1016/j.echo.2014.10.003.

15. Krupatkin AI, Sidorov VV, Tankanag AV, Chemeris NK. Diagnostics of the functional state of microcirculation by laser Doppler flowmetry. In: Krupatkin AI, Sidorov VV. Functional diagnostics of the state of microcirculatory-tissue systems: Fluctuations, information, nonlinearity. Guide for Physicians. Moscow: Lenand; 2016. p.156-251 (In Russ.)

16. Makolkin VI, Podzolkov VI, Branko VV, et al. Microcirculation in cardiology. Moscow: Vizart; 2004 (In Russ.) [Маколкин В.И., Подзолков В.И., Бранько В.В., и др. Микроциркуляция в кардиологии. М.: Визарт; 2004].

17. Fernandes DC, Araujo TLS, Laurindo FR, Tanaka LY. Endocrine function and metabolic interaction. In: Lilly LS, ed. Pathophysiology of Heart Disease. 6th ed. Baltimore, MD: Wolters Kluwer/Lippincott Williams & Wilkins; 2011. p.85-92.

18. Naryzhny SN, Legina OK. Haptoglobin as a biomarker. Biomed Khim. 2021;67(2):105-18. (in Russ.). DOI:10.18097/PBMC20216702105.

19. Engström G, Hedblad B, Tydén P, Lindgärde F. Inflammation-sensitive plasma proteins are associated with increased incidence of heart failure: a population-based cohort study. Atherosclerosis. 2009;202(2):617-22. DOI:10.1016/j.atherosclerosis.2008.05.038

20. Haas B, Serchi T, Wagner DR, et al. Proteomic analysis of plasma samples from patients with acute myocardial infarction identifies haptoglobin as a potential prognostic biomarker. Journal of Proteomics. 2011;75(1):229-36. DOI:10.1016/j.jprot.2011.06.028.

21. Lu DY, Lin C P, Wu CH, et al. Plasma haptoglobin level can augment NT-proBNP to predict poor outcome in patients with severe acute decompensated heart failure. J Investig Med. 2019;67(1):20- 7. DOI:10.1136/jim-2018-000710.

22. Dobryszycka W. Biological functions of haptoglobin - new pieces to an old puzzle. Eur J Clin Chem Clin Biochem. 1997;35(9):647-54.

23. Richards MP. Redox reactions of myoglobin. Antioxid Redox Signal. 2013;18(17):2342-51. DOI:10.1089/ars.2012.4887.

24. Stolbova SK, Dragomiretskaya NA, Beliaev YuG, Podzolkov VI. Clinical and laboratory associations of liver fibrosis indexes in patients with decompensated Chronic Heart Failure II-IV Functional Classes. Kardiologiia. 2020;60(5):90-9 (In Russ.) DOI:10.18087/cardio.2020.5.n920.

25. Frimat M, Boudhabhay I, Roumenina LT. Hemolysis derived products toxicity and endothelium: Model of the second hit. Toxins (Basel). 2019;11(11):660. DOI:10.3390/toxins11110660.

26. Alem MM. Endothelial dysfunction in chronic heart failure: assessment, findings, significance, and potential therapeutic targets. Int J Mol Sci. 2019;20(13):3198. DOI:10.3390/ijms20133198.

27. Zuchi C, Tritto I, Carluccio E, et al. Role of endothelial dysfunction in heart failure. Heart Fail Rev. 2020;25(1):21-30. DOI:10.1007/s10741-019-09881-3.

28. di Masi A, De Simone G, Ciaccio C, et al. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med. 2020;73:100851. DOI:10.1016/j.mam.2020.100851.

29. Rastogi A, Novak E, Platts AE, Mann DL. Epidemiology, pathophysiology and clinical outcomes for heart failure patients with a mid-range ejection fraction. Eur J Heart Fail. 2017;19(12):1597-605. DOI:10.1002/ejhf.879


For citation:


Podzolkov V.I., Dragomiretskaya N.A., Beliaev I.G., Kucherova J.S., Kazadaeva A.V. Endothelial Microvascular Dysfunction and Its Relationship with Haptoglobin Levels in Patients with Different Phenotypes of Chronic Heart Failure. Rational Pharmacotherapy in Cardiology. 2021;17(5):674-682. https://doi.org/10.20996/1819-6446-2021-10-05

Views: 128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)