Rational Pharmacotherapy in Cardiology

Advanced search


Full Text:


The problem of vascular aging is discussed. Special attention among the signs of vascular aging is paid to the activation of the renin-angiotensin-aldosterone system as a source of chronic inflammation and oxidative stress, as well as to its relation to replicative cellular senescence. Potential routes of exposure to these processes are also considered.

About the Authors

V. S. Pykhtina
State Research Center for Preventive Medicine
Russian Federation
Petroverigskiy per. 10, Moscow, 101990 Russia

I. D. Strazhesko
State Research Center for Preventive Medicine
Russian Federation
Petroverigskiy per. 10, Moscow, 101990 Russia

M. V. Agaltsov
State Research Center for Preventive Medicine
Russian Federation
Petroverigskiy per. 10, Moscow, 101990 Russia

O. N. Tkacheva
State Research Center for Preventive Medicine
Russian Federation
Petroverigskiy per. 10, Moscow, 101990 Russia


1. Population Ageing and Development 2012/Wallchart. New York: United Nations; 2012.

2. Cardiovascular diseases (CVDs). Fact sheet N°317, Updated March 2013. Available at: Accessed by 31.05.2014.

3. Sawabe M. Vascular aging: from molecular mechanism to clinical significance. Geriatr Gerontol Int 2010;10(Suppl 1):S213-20.

4. Glass CK, Witztum JL. Atherosclerosis the road ahead. Cell 2001;104:503-16.

5. Vasan RS, Demissie S, Kimura M, et al. Association of Leukocyte Telomere Length with Circulating Biomarkers of the Renin-Angiotensin-Aldosterone System: The Framingham Heart Study. Circulation 2008; 117(9): 1138-44.

6. Lambeth JD. Nox enzymes, ROS, chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 2007; 43:332-47.

7. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31(Suppl 2):S170-80.

8. Rocchini AP, Moorehead C, DeRemer S, et al. Hyperinsulinemia and the aldosterone and pressor responses to angiotensin II. Hypertension1990; 15:861-6.

9. Nistala R, Whaley-Connell A. Sowers JR Redox control of renal function and hypertension. Antioxid Redox Signal 2008; 10(12):2047-89.

10. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86:494-501.

11. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90(17):7915-22.

12. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev1993; 45:205-51.

13. Urata H, Boehm KD, Philip A, et al. Cellular localization and regional distribution of an angiotensin Iformingchymase in the heart. J Clin Invest 1993; 91: 1269-81.

14. Huang XR, Chen WY, Truong LD, Lan HY. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am SocNephrol 2003; 14: 1738-47.

15. Bacani C, Frishman WH. Chymase: a new pharmacologic target in cardiovascular disease. Cardiol Rev 2006; 14: 187-93

16. Miyazaki M, Takai S. Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci 2006 ; 100: 391-7.

17. Simpson SA, Tait JF, Wettstein A, et al. Constitution of aldosterone, a new mineralocorticoid. Experientia1954;10:132-3.

18. Goodfriend TL, Egan BM, Kelley DE. Aldosterone in obesity. Endocr Res 1998; 24:789–96.

19. Brown NJ. Aldosterone and vascular inflammation. Hypertension 2008; 51:161-7.

20. Wei Y, Whaley-Connell AT, Habibi J, et al. Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation. Hypertension 2009; 53(2):158-65.

21. Hirono Y, Yoshimoto T, Suzuki N, et al. Angiotensin II receptor type 1-mediated vascular oxidative stress and proinflammatory gene expression in aldosterone-induced hypertension: the possible role of local renin-angiotensin system. Endocrinology 2007; 148:1688-96.

22. Stas S, Whaley-Connell A, et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin–II-aldosterone system stimulation of reduced NADPH oxidase and cardiac remodeling. Endocrinology 2007; 148:3773-80.

23. Van Kats JP, Danser AH, van Meegen JR, et al. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusion. Circulation 1998; 98: 73-81.

24. Kobori H, Pieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II dependent hypertension. Hypertension 2004; 43: 1126-32.

25. Moulik S, Speth RC, Turner BB, Rowe BP. Angiotensin II receptor subtype distribution in the rabbit brain. Exp Brain Res 2002; 142: 275-83.

26. Ghiani BU, Masini MA. Angiotensin II bindings sites in the rat pancreas and their modulation after sodium loading and depletion. Comp Biochem Physiol A Physiol 1995; 111: 439-44.

27. Thomas WG, Sernia C. Theimmunocytochemical localization of angiotensinogen in the rat ovary. Cell tissue Res 1990; 261: 367-73.

28. Iwai N, Inagami T, Ohmichi N, Kinoshita M Renin is expressed in rat macrophage/monocyte cells. Hypertension 1996; 27: 399-403.

29. Karlsson C, Lindell K, Ottoson M, et al. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab 1998; 83: 3925-9.

30. de Mello W. Effect of extracellular and intracellular angiotensin on heart cell function; on the cardiac renin-angiotensin system. RegulPept 2003; 114: 87-90.

31. Sowers JR, Whaley-Connell A, Epstein M. The emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med 2009; 150:776-83.

32. Whaley-Connell A, Sowers JR. Aldosterone and risk for insulin resistance. Hypertension 2011;58(6):998-1000.

33. de Cavanagh EM, Inserra F, Ferder M, Ferder L. From mitochondria to disease: role of the renin-angiotensin system. Am J Nephrol 2007; 27: 545-3.

34. Wilson SK. Role of oxygen-derived free radicals in acute angiotensin II-induced hypertensive vascular disease in the rat. Circ Res 1990; 66: 722-34.

35. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulaes NADH and NADPH oxidase activity in cultures vascular smooth muscle cells. Circ Res 1994; 74: 1141-8.

36. Suzuki Y, Ruiz-Ortega M, Lorenzo O, et al. Inflammation and angiotensin II. IJBCB 2003; 35:881-900.

37. Min LJ, Mogi M, Iwai M, Horiuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev 2009; 8: 113-121

38. Wong JM, Collins K. Telomere maintenance and disease. Lancet 2003; 362 (9388): 983-8.

39. Greider CW, Blackburn EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987;51:887-98.

40. Blackburn EH, Greider CW, Henderson E, et al. Recognition and elongation of telomeres by telomerase. Genome 1989;31:553-60.

41. Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte Telomere Length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 2007; 165 (1); 14-21.

42. O'Donovan A, Pantell MS, Puterman E, et al. Cumulative inflammatory load is associated with short leukocyte Telomere Length in the Health, Aging and Body Composition Study. PLoS One. 2011; 6 (5): e19687.

43. Benetos A, Gardner JP, Zureik M, et al. Short telomeres are associated withincreased carotid atherosclerosis in hypertensive subjects. Hypertension 2004; 43 (2): 182-5.

44. Willeit P, Willeit J, Brandstatter A, et al. Cellular aging reflected by leukocyte Telomere Length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 2010; 30 (8): 1649-56.

45. Parks CG, DeRoo LA, Miller DB, et al. Employment and work schedule are related to Telomere Length in women. Occup Environ Med 2011; 68 (8): 582-9.

46. Dudognon C, Pendino F, Hillion J, et al. Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 2004;23:7469-74.

47. Strazhesko ID, Akasheva DU, Dudinskaya EN, Tkacheva ON. Vascular ageing: main symptoms and mechanisms. Cardiovascular Therapy and Prevention 2012; 11(4): 93-100 (Стражеско И.Д., Акашева Д.У., Дудинская Е.Н., Ткачева О.Н. Старение сосудов: основные признаки и механизмы. Кар-диоваскулярная терапия и профилактика 2012; 11(4): 93-100).

48. Ogami M, Ikura Y, Ohsawa M, et al. Telomere shortening in human coronary artery diseases. Arterioscler Thromb Vasc Biol 2004; 24 (3): 546-50.

49. Benetos A, Okuda K, Lajemi M, et al. Telomere Length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001; 37(2):381-5.

50. Nawrot TS, Staessen JA, Gardner JP, et al. Telomere Length and possible link to X chromosome. Lancet 2004; 363 (9408):507-10.

51. Boytsov SA, Strazhesko ID, Akasheva DU, et al. Insulin resistance: good or bad? Development mechanisms and the association with age-related vascular changes. Cardiovascular Therapy and Prevention 2013; 12(4): 91-7 (Бойцов С.А., Стражеско И.Д., Акашева Д.У., и др. Инсулинорезистент-ность: благо или зло? механизмы развития и связь с возраст-ассоциированными изменения-ми сосудов. Кардиоваскулярная Терапия и Профилактика 2013; 12(4): 91-7).

52. Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 2006; 5:325-30.

53. Santos JH, Meyer JN, Skorvaga M, et al. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004;3:399-411.

54. Ahmed S, Passos JF, Birket MJ, et al. Telomerase does not counteract telomere shorteningbut protects mitochondrial function under oxidative stress. J Cell Sci 2008;121:1046-53.

55. Haendeler J, Drose S, Buchner N, et al. Mitochondrial telomerase reverse transcriptasebinds to and protects mitochondrial DNA and function from damage. Arterioscler Thromb Vasc Biol 2009;29:929-35.

56. Gleichmann U, Gleichmann US, Gleichmann S. From cardiovascular prevention to anti-aging medicine: influence on telomere and cell aging. Dtsch Med Wochenschr 2011;136(38):1913-6.

57. Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol 2008;9(11):1048-57.

58. Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhancemigratorycapacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitorcells. Circulation 2004; 110: 3136-42.

59. Strazhesko ID, Akasheva DU, Dudinskaya EN, et al. Renin-angiotinsin-aldosterone system and vascular aging. Cardiology 2013; (7): 78-84 (Стражеско И.Д., Акашева Д.У., ДудинскаяЕ.Н., и др. Ре-нин-ангиотензин-альдостероновая система и старение сосудов. Кардиология 2013; (7): 78-84).

60. Anderson TJ, Elstein E, Haber H, Charbonneau F. Comparative study of ACEinhibition, angiotensin II antagonism, and calcium channel blockade on flowmediated vasodilation in patients with coronary disease (BANFF study). J Am Coll Cardiol 2000;35:60-6.

61. Ghiadoni L, Magagna A, Versari D, et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003;41:1281-6.

62. Antony I, Lerebours G, Nitenberg A. Angiotensin-converting enzyme inhibition restores flow-dependent and cold pressor test-induced dilations in coronary arteries of hypertensive patients. Circulation 1996;94:3115-22.

63. Ceconi C, Fox K, Remme W, et al. ACE inhibition with perindopril and endothelial function. Results of a substudy of the EUROPA study: PERTINENT. Cardiovasc Res 2007;73:237-46.

64. Ferrari R, Guardigli G, Ceconi C. Secondary prevention of CAD with ACE inhibitors: a struglle between life and death of the endothelium. Cardiovasc Drug Ther 2010;24:331-9.

65. Ferrari R. Angiotensin-converting enzyme inhibition in cardiovascular disease: evidence with perindopril. Expert Rev Cardiovasc Ther 2005; 3:15-29.

66. Ceconi C, Francolini G, Bastianon D, et al. Differences in the effect of angiotensin-converting enzyme inhibitors on the rate of endothelial cell apoptosis: in vitro and in vivo studies. Cardiovasc Drug Ther 2007;21:423-29.

67. Ceconi C, Francolini G, Olivares A, et al. Angiotensinconverting enzyme (ACE) inhibitors have different selectivity for bradykinin binding sites of human somatic ACE. Eur J Pharmacol 2007;577:1-6.

68. Goon PK, Boos CJ, Lip GY. Circulating endothelial cells: markers of vascular dysfunction. Clin Lab 2005;51:531-8.

For citation:

Pykhtina V.S., Strazhesko I.D., Agaltsov M.V., Tkacheva O.N. RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM AND REPLICATIVE CELLULAR SENESCENCE: THEIR INTERACTION DURING THE VASCULAR AGEING. Rational Pharmacotherapy in Cardiology. 2014;10(3):312-316. (In Russ.)

Views: 448

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)