Rational Pharmacotherapy in Cardiology

Advanced search

Assessment of Arterial Stiffness Using the Cardio-Ankle Vascular Index – What We Know and What We Strive for

Full Text:


Currently, the importance of assessing arterial stiffness as an integral indicator of cardiovascular risk, an indicator of arteriosclerosis, and a predictor of cardiovascular events has been demonstrated. The traditional indicator of arterial stiffness-pulse wave velocity-depends on the level of blood pressure, which makes it difficult to use it for dynamic assessment. The proposed new arterial stiffness index-the cardio-ankle vascular index (CAVI), does not depend on the level of blood pressure and is more convenient in practical use. CAVI has been widely used in clinical medicine for the past 15 years as an index for assessing cardiovascular diseases and risk factors, which has allowed for the expansion and deepening of research on this topic. This review focuses primarily on recent publications and new opportunities for evaluating vascular function using CAVI. The review provides information on solving methodological problems in evaluating CAVI, highlights the relationship between CAVI and future cardiovascular events, and provides cross-sectional data on the Association of CAVI with the presence of cardiovascular diseases and their risk factors. The results of studies on the effect of drug therapy and measures to control risk factors for cardiovascular diseases on CAVI are presented. While it remains unclear how much changes in CAVI over time can affect the forecast, research is currently being conducted in this direction. The use of CAVI also opens up new perspectives in the assessment of cardiovascular interactions, the study of vascular function in vasculitis and vascular injuries, as well as in geriatric medicine (concepts of premature vascular aging and excess vascular aging).

About the Authors

A. N. Sumin
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Alexey N. Sumin

eLibrary SPIN 5772-7038


A. V. Shcheglova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Anna V. Shcheglova 



1. Townsend RR, Wilkinson IB, Schiffrin EL, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66(3):698‐722. DOI:10.1161/HYP.0000000000000033.

2. VasyukYuA, Ivanova SV, Shkolnik EL, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2):4-19 (In Russ.). DOI:10.15829/1728-8800-2016-2-4-19.

3. Hayashi K, Yamamoto T, Takahara A, Shirai K. Clinical assessment of arterial stiffness with cardio-ankle vascular index: theory and applications. J Hypertens. 2015;33(9):1742-57. DOI:10.1097/HJH.0000000000000651.

4. Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter: cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13(2):101-7. DOI:10.5551/jat.13.101.

5. Saiki A, Sato Y, Watanabe R, et al. The role of a novel arterial stiffness parameter, cardio-ankle vascular index (CAVI), as a surrogate marker for cardiovascular diseases. J Atheroscler Thromb. 2016;23(2):155-68. DOI:10.5551/jat.32797.

6. Shirai K, Hiruta N, Song M, et al. Cardio‐ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and perspectives. J Atheroscler Thromb. 2011;18(11):924‐38. DOI:10.5551/jat.7716.

7. Matsushita K, Ding N, Kim ED, et al. Cardio-ankle vascular index and cardiovascular disease: Systematic review and meta-analysis of prospective and cross-sectional studies. J Clin Hypertens (Greenwich). 2019;21(1):16-24. DOI:10.1111/jch.13425.

8. Takahashi K, Yamamoto T, Tsuda S, et al. The Background of Calculating CAVI: Lesson from the Discrepancy Between CAVI and CAVI0. Vasc Health Risk Manag. 2020;16:193-201. DOI:10.2147/VHRM.S223330.

9. Saiki A, Ohira M, Yamaguchi T, et al. New Horizons of Arterial Stiffness Developed Using Cardio-Ankle Vascular Index (CAVI). J Atheroscler Thromb. 2020;27(8):732-48. DOI:10.5551/jat.RV17043.

10. Spronck B, Avolio AP, Tan I, et al. Arterial stiffness index beta and cardio-ankle vascular index inherently dependent on blood pressure but can be readily corrected. J Hypertens. 2017;35(1):98-104. DOI:10.1097/HJH.0000000000001132.

11. Shirai K, Shimizu K, Takata M, Suzuki K. Independency of the cardio-ankle vascular index from blood pressure at the time of measurement. J Hypertens. 2017;35(7):1521-3. DOI:10.1097/HJH.0000000000001349.

12. Shirai K, Suzuki K, Tsuda S, et al. Comparison of Cardio-Ankle Vascular Index (CAVI) and CAVI0 in Large Healthy and Hypertensive Populations. J Atheroscler Thromb. 2019;26(7):603-615. DOI:10.5551/jat.48314.

13. Sakuma K, Shimoda A, Shiratori H, et al. Angiotensin II acutely increases arterial stiffness as monitored by cardio-ankle vascular index (CAVI) in anesthetized rabbits. J Pharmacol Sci. 2019;140(2):2059. DOI:10.1016/j.jphs.2019.06.004.

14. Katsuda SI, Fujikura Y, Horikoshi Y, et al. Different Responses of Arterial Stiffness between the Aorta and the Iliofemoral Artery during the Administration of Phentolamine and Atenolol in Rabbits. J Atheroscler Thromb. 2021;28(6):611-621. DOI:10.5551/jat.57364.

15. Kato A, Takita T, Furuhashi M, et al. Brachial-ankle pulse wave velocity and the cardio-ankle vascular index as a predictor of cardiovascular outcomes in patients on regular hemodialysis. Ther Apher Dial. 2012;16(3):232-41. DOI:10.1111/j.1744-9987.2012.01058.x.

16. Laucevičius A, Ryliškytė L, Balsytė J, et al. Association of cardio-ankle vascular index with cardiovascular risk factors and cardiovascular events in metabolic syndrome patients. Medicina (Kaunas). 2015;51(3):152-8. DOI:10.1016/j.medici.2015.05.001.

17. Satoh-Asahara N, Kotani K, Yamakage H, et al.; Japan Obesity and Metabolic Syndrome Study (JOMS) Group. Cardio-ankle vascular index predicts for the incidence of cardiovascular events in obese patients: a multicenter prospective cohort study (Japan Obesity and Metabolic Syndrome Study: JOMS). Atherosclerosis. 2015;242(2):461-8. DOI:10.1016/j.atherosclerosis.2015.08.003.

18. Kusunose K, Sato M, Yamada H, et al. Prognostic Implications of Non-Invasive Vascular Function Tests in High-Risk Atherosclerosis Patients. Circ J. 2016;80(4):1034-40. DOI:10.1253/circj.CJ-151356.

19. Sato Y, Nagayama D, Saiki A, et al. Cardio-Ankle Vascular Index is Independently Associated with Future Cardiovascular Events in Outpatients with Metabolic Disorders. J Atheroscler Thromb. 2016;23(5):596-605. DOI:10.5551/jat.31385.

20. Sumin AN, Shcheglova AV, Bashtanova TB, Barbarash OL. The influence of pathological cardio-ankle vessel index on annual results of coronary bypass in petients with ischemic heart disease. Cardiovascular Therapy and Prevention. 2015;14(3):18-24 (In Russ.). DOI:10.15829/1728-8800-2015-3-18-24.

21. Otsuka K, Fukuda S, Shimada K, et al. Serial assessment of arterial stiffness by cardio-ankle vascular index for prediction of future cardiovascular events in patients with coronary artery disease. Hypertens Res. 2014;37(11):1014-20. DOI:10.1038/hr.2014.116.

22. Gohbara M, Iwahashi N, Sano Y, et al. Clinical Impact of the Cardio-Ankle Vascular Index for Predicting Cardiovascular Events After Acute Coronary Syndrome. Circ J. 2016;80(6):1420-6. DOI:10.1253/circj.CJ-15-1257.

23. Kirigaya J, Iwahashi N, Tahakashi H, et al. Impact of Cardio-Ankle Vascular Index on Long-Term Outcome in Patients with Acute Coronary Syndrome. J Atheroscler Thromb. 2020;27(7):657-68. DOI:10.5551/jat.51409.

24. Sano T, Kiuchi S, Hisatake S, et al. Cardio-ankle vascular index predicts the 1-year prognosis of heart failure patients categorized in clinical scenario 1. Heart Vessels. 2020;35(11):1537-44. DOI:10.1007/s00380-020-01633-w.

25. Takagi K, Ishihara S, Kenji N, et al. Clinical significance of arterial stiffness as a factor for hospitalization of heart failure with preserved left ventricular ejection fraction: a retrospective matched case-control study. J Cardiol. 2020;76(2):171-6. DOI:10.1016/j.jjcc.2020.02.013.

26. Kim ED, Ballew SH, Tanaka H, et al. Short-Term Prognostic Impact of Arterial Stiffness in Older Adults Without Prevalent Cardiovascular Disease. Hypertension. 2019;74(6):1373-82. DOI:10.1161/HYPERTENSIONAHA.119.13496.

27. Spinelli FR, Pecani A, Ciciarello F, et al. Association between antibodies to carbamylated proteins and subclinical atherosclerosis in rheumatoid arthritis patients. BMC Musculoskelet Disord. 2017;18(1):214. DOI:10.1186/s12891-017-1563-8.

28. Carlucci PM, Purmalek MM, Dey AK, et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight. 2018;3(8):e99276. DOI:10.1172/jci.insight.99276.

29. Sumin AN, Osokina AV, Shcheglova AV, et al. Assessment of cardio-ankle vascular index in patients with coronary artery disease with a different type of diastolic dysfunction of the left ventricle. Kompleksnye Problem Serdechno-Sosudistyh Zabolevanij. 2016;5(2):51-8 (In Russ.). DOI:10.17802/2306-12782016-2-51-58.

30. Schillaci G, Battista F, Settimi L, et al. Cardio-ankle vascular index and subclinical heart disease. Hypertens Res. 2015;38(1):68-73. DOI:10.1038/hr.2014.138.

31. Sumin AN, Osokina AV, Shcheglova AV, et al. EchoCG data in IHD patients with different cardio-ankle vascular indexes. Russian Heart Journal. 2015;14(3):123-30 (In Russ.)

32. Namba T, Masaki N, Matsuo Y, et al. Arterial Stiffness Is Significantly Associated With Left Ventricular Diastolic Dysfunction in Patients With Cardiovascular Disease. Int Heart J. 2016;57(6):729-35. DOI:10.1536/ihj.16-112.

33. Lüers C, Trippel TD, Seeländer S, et al. Arterial stiffness and elevated left ventricular filling pressure in patients at risk for the development or a previous diagnosis of HF-A subgroup analysis from the DIAST-CHF study. J Am Soc Hypertens. 2017;11(5):303-13. DOI:10.1016/j.jash.2017.03.006.

34. Yoshida Y, Nakanishi K, Daimon M, et al. Sex-specific difference in the association between arterial stiffness and subclinical left ventricular dysfunction. Eur Heart J Cardiovasc Imaging. 2021;22(7):817-23. DOI:10.1093/ehjci/jeaa156.

35. Yoshida Y, Nakanishi K, Daimon M, et al. Association of arterial stiffness with left atrial structure and phasic function: a community-based cohort study. J Hypertens. 2020;38(6):1140-8. DOI:10.1097/HJH.0000000000002367.

36. Podzolkov VI, Tarzimanova AI, Bragina AE, et al. Changes in Arterial Wall Stiffness in Patients with Obesity and Paroxysmal Form of Atrial Fibrillation. Rational Pharmacotherapy in Cardiology. 2020;16(4):516-21 (In Russ.). DOI:10.20996/1819-6446-2020-08-05.

37. Itano S, Yano Y, Nagasu H, et al. Association of Arterial Stiffness With Kidney Function Among Adults Without Chronic Kidney Disease. Am J Hypertens. 2020;33(11):1003-10. DOI:10.1093/ajh/hpaa097.

38. Satirapoj B, Triwatana W, Supasyndh O. Arterial Stiffness Predicts Rapid Decline in Glomerular Filtration Rate Among Patients with High Cardiovascular Risks. J Atheroscler Thromb. 2020;27(6):6119. DOI:10.5551/jat.52084.

39. Mulè' G, Sinatra N, Vario MG, et al. The Renal Dangers of an Increased Cardio-Ankle Vascular Index. Am J Hypertens. 2020;33(11):993-5. DOI:10.1093/ajh/hpaa110.

40. Safar ME, Plante GE, Mimran A. Arterial stiffness, pulse pressure, and the kidney. Am J Hypertens. 2015;28(5):561-69. DOI:10.1093/ajh/hpu206.

41. Hitsumoto T. Correlation Between the Cardio-Ankle Vascular Index and Renal Resistive Index in Patients With Essential Hypertension. Cardiol Res. 2020;11(2):106-12. DOI:10.14740/cr1026.

42. Sato S, Takahashi M, Mikamo H, et al. Effect of nicorandil administration on cardiac burden and cardio-ankle vascular index after coronary intervention. Heart Vessels. 2020;35(12):1664-71. DOI:10.1007/s00380-020-01650-9.

43. Shimizu N, Ban N, Watanabe Y, et al. The Elevation of Cardio-Ankle Vascular Index in a Patient With Malignant Lymphoma Treated With a Combination Therapy of Rituximab and Cyclophosphamide, Doxorubicin, Vincristine, and Prednisolone. J Clin Med Res. 2017;9(8):729-32. DOI:10.14740/jocmr3071w.

44. Nishiwaki M, Kora N, Matsumoto N. Ingesting a small amount of beer reduces arterial stiffness in healthy humans. Physiol Rep. 2017;5(15):e13381. DOI:10.14814/phy2.13381.

45. Nishiwaki M, Yamaguchi T, Nishida R, Matsumoto N. Dose of Alcohol From Beer Required for Acute Reduction in Arterial Stiffness. Front Physiol. 2020;11:1033. DOI:10.3389/fphys.2020.01033.

46. Gonzalez-Sanchez J, Garcia-Ortiz L, Rodriguez-Sanchez E, et al. EVA Investigators. The Relationship Between Alcohol Consumption With Vascular Structure and Arterial Stiffness in the Spanish Population: EVA Study. Alcohol Clin Exp Res. 2020;44(9):1816-24. DOI:10.1111/acer.14411.

47. Kume D, Nishiwaki M, Hotta N, Endoh H. Impact of acute mental stress on segmental arterial stiffness. Eur J Appl Physiol. 2020;120(10):2247-57. DOI:10.1007/s00421-020-04448-9.

48. Wooten SV, Stray-Gundersen S, Tanaka H. Hemodynamic and Pressor Responses to Combination of Yoga and Blood Flow Restriction. Int J Sports Med. 2020;41(11):759-65. DOI:10.1055/a-11711620.

49. Kobayashi R, Kasahara Y, Ikeo T, et al. Effects of different intensities and durations of aerobic exercise training on arterial stiffness. J Phys Ther Sci. 2020;32(2):104-9. DOI:10.1589/jpts.32.104.

50. Chidnok W, Wadthaisong M, Iamsongkham P, et al. Effects of high-intensity interval training on vascular function and maximum oxygen uptake in young sedentary females. Int J Health Sci (Qassim). 2020;14(1):3-8.

51. Mori K, Nomura T, Akezaki Y, et al. Impact of Tai Chi Yuttari-exercise on arteriosclerosis and physical function in older people. Arch Gerontol Geriatr. 2020;87:104011. DOI:10.1016/j.archger.2020.104011.

52. Uemura K, Yamada M, Kuzuya M, Okamoto H. Effects of Active Learning Education on Arterial Stiffness of Older Adults with Low Health Literacy: A Randomized Controlled Trial. J Atheroscler Thromb. 2021;28(8):865-72. DOI:10.5551/jat.58354.

53. Yonekura Y, Terauchi M, Hirose A, et al. Daily Coffee and Green Tea Consumption Is Inversely Associated with Body Mass Index, Body Fat Percentage, and Cardio-Ankle Vascular Index in Middle-Aged Japanese Women: A Cross-Sectional Study. Nutrients. 2020;12(5):1370. DOI:10.3390/nu12051370.

54. Garcia-Yu IA, Garcia-Ortiz L, Gomez-Marcos MA, et al. Effects of Cocoa-Rich Chocolate on Blood Pressure, Cardiovascular Risk Factors, and Arterial Stiffness in Postmenopausal Women: A Randomized Clinical Trial. Nutrients. 2020;12(6):1758. DOI:10.3390/nu12061758.

55. Lamacchia O, Sorrentino MR. Diabetes Mellitus, Arterial Stiffness and Cardiovascular Disease: Clinical Implications and the Influence of SGLT2i. Curr Vasc Pharmacol. 2021;19(2):233-40. DOI:10.2174/1570161118666200317150359.

56. Kobayashi R, Sato K, Sakazaki M, et al. Acute effects of difference in glucose intake on arterial stiffness in healthy subjects. Cardiol J. 2021;28(3):446-52. DOI:10.5603/CJ.a2019.0108.

57. Kobayashi R, Sato K, Takahashi T, et al. Effects of a short-term increase in physical activity on arterial stiffness during hyperglycemia. J Clin Biochem Nutr. 2020;66(3):238-44. DOI:10.3164/jcbn.1969.

58. Nilsson PM. Early Vascular Aging in Hypertension. Front Cardiovasc Med. 2020;7:6. DOI:10.3389/fcvm.2020.00006.

59. Rotar OP, Tolkunova KM. EVA and SUPERNOVA concepts of vascular aging: ongoing research on damaging and protective risk factors. Arterial Hypertension. 2020;26(2):133-45 (In Russ.). DOI:10.18705/1607-419X-2020-26-2-133-145.

60. Imamura H, Yamaguchi T, Nagayama D, et al. Resveratrol Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Patients With Type 2 Diabetes Mellitus. Int Heart J. 2017;58(4):57783. DOI:10.1536/ihj.16-373.

61. Usui T, Tochiya M, Sasaki Y, et al. Effects of natural S-equol supplements on overweight or obesity and metabolic syndrome in the Japanese, based on sex and equol status. Clin Endocrinol (Oxf). 2013;78(3):365-72. DOI:10.1111/j.1365-2265.2012.04400.x.

62. Tolkunova KM, Rotar OP, Erina AM, et al. Supernormal vascular aging — prevalence and determinants at population level (the ESSE-RF data). Arterial Hypertension. 2020;26(2):170-83. (In Russ.) . DOI:10.18705/1607-419X-2020-26-2-170-183.

63. Kario K, Kabutoya T, Fujiwara T, et al. Rationale, design, and baseline characteristics of the Cardiovascular Prognostic COUPLING Study in Japan (the COUPLING Registry). J Clin Hypertens (Greenwich). 2020;22(3):465-74. DOI:10.1111/jch.13764.

64. Tanaka A, Tomiyama H, Maruhashi T, et al; Physiological Diagnosis Criteria for Vascular Failure Committee. Physiological Diagnostic Criteria for Vascular Failure. Hypertension. 2018;72(5):1060-71. DOI:10.1161/HYPERTENSIONAHA.118.11554.

65. Rogoza AN, Zairova AR, Zhernakova JV, et al. Vascular wall in the adult population on the example of the inhabitants of Tomsk according to the research ESSAYRF. Systemic Hypertension. 2014;11(4):42-8 (In Russ.).

66. Sumin AN, Shcheglova AV, Fedorova NV, Artamonova GV. Values of cardial-ankle vascular index in healthy people of different age by the data of ESSE-RF study in Kemerovskaya Region. Cardiovascular Therapy and Prevention. 2015;14(5):67-72 (In Russ.). DOI:10.15829/1728-8800-2015-5-67-72.

67. Rico Martín S, Vassilenko V, de Nicolás Jiménez JM, et al. Cardio-ankle vascular index (CAVI) measured by a new device: protocol for a validation study. BMJ Open. 2020;10(10):e038581. DOI:10.1136/bmjopen-2020-038581.


For citations:

Sumin A.N., Shcheglova A.V. Assessment of Arterial Stiffness Using the Cardio-Ankle Vascular Index – What We Know and What We Strive for. Rational Pharmacotherapy in Cardiology. 2021;17(4):619-627. (In Russ.)

Views: 305

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)