Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Novel Biomarkers of Endothelial Dysfunction in Cardiovascular Diseases

https://doi.org/10.20996/1819-6446-2021-08-08

Full Text:

Abstract

The review analyzes the role of assessing the state of the endothelium in the onset and progression of cardiovascular diseases, stratification of their risks, since endothelial dysfunction (ED) is a crucial predictor of this pathologies. In this regard, this paper presents the modern understanding of the methods for assessing ED, presents the advantages and disadvantages of various techniques. Despite the fact that flow-mediated dilation is widely used as a classical method for studying endothelial function, this technique depends on the physiological state of sensory nerves and calcium-activated potassium channels, cardiac output. This review focuses on new biomarkers for ED such as endothelial microparticles, endoglin and endocan, and discusses the relevance of the criteria for their use in clinical practice. Based on current scientific advances, the authors concluded that among these three newest biomarkers, today, endocan can be considered a more informative and reliable cellular marker of ED. Moreover, the authors have shown that when measured separately, many of the studied classical circulating biomarkers do not provide reliable information about the state of the endothelium, since the endothelial function has a complex physiological nature which therefore raises the question of the advisability of considering a combination of classical and new biomarkers for improving the assessment of the endothelial state.

About the Authors

Z. M. Abdurakhmanov
Bukhara State Medical Institute
Uzbekistan

Zufar M. Abdurakhmanov 

Bukhara



B. Y. Umarov
Bukhara State Medical Institute
Uzbekistan

Bakhtiyor Y. Umarov 

Bukhara



M. M. Abdurakhmanov
Bukhara State Medical Institute
Uzbekistan

Mamur M. Abdurakhmanov

Bukhara



References

1. Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591-619. DOI:10.1111/bph.13517.

2. Shabrov AV, Apresyan AG, Dobkes AL, et al. Current methods of endothelial dysfunction assessment and their possible use in the practical medicine. Rational Pharmacotherapy in Cardiology. 2016;12(6):733-42 (In Russ). DOI:10.20996/1819-6446-2016-12-6-733-742.

3. Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacological Reviews. 2016;68(2):357418. DOI:10.1124/pr.115.011833.

4. Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, et al. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021;22(8):3850. DOI:10.3390/ijms22083850.

5. Munzel T, Gori T, Keaney JF, et al. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J. 2015;36(38):2555-64. DOI:10.1093/eurheartj/ehv305.

6. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121. DOI:10.1186/s12933-018-0763-3.

7. Smiljic S. The clinical significance of endocardial endothelial dysfunction. Medicina (Kaunas). 2017;53(5):295-302. DOI:10.1016/j.medici.2017.08.003.

8. Mordi I, Mordi N, Delles C, et al. Endothelial dysfunction in human essential hypertension. Journal of Hypertension. 2016;34(8):1464-72. DOI:10.1097/HJH.0000000000000965.

9. Gungor ZB, Sipahioglu N, Sonmez H, et al. Endothelial dysfunction markers in low cardiovascular risk individuals: comparison of males and females. Journal of Medical Biochemistry. 2017;36(1):62-72. DOI:10.1515/jomb-2016-0030.

10. Talavera-Adame D. Endothelium-derived essential signals involved in pancreas organogenesis. World Journal of Experimental Medicine. 2015;5(2):40. DOI:10.5493/wjem.v5.i2.40.

11. Castro-Ferreira R, Cardoso R, Leite-Moreira A, et al. The role of endothelial dysfunction and inflammation in chronic venous disease. Ann Vasc Surg. 2018;46:380-93. DOI:10.1016/j.avsg.2017.06.131.

12. Fernandes DC, Araujo TSLS, Tanaka LY. Hemodynamic forces in the endothelium: from mechanotransduction to implications on development of atherosclerosis. In: Da Luz PL, Libby P, Chagas ACP, Laurindo FRM, eds. Endothelium and cardiovascular diseases: vascular biology and clinical syndromes. London, England: Academic Press; 2018:85-95. DOI:10.1177/0003319720946977.

13. Tremblay JC, Grewal AS, Pyke KE. Examining the acute effects of retrograde versus low mean shear rate on flow-mediated dilation. J Appl Physiol. 2019;126(5):1335-42. DOI:10.1152/japplphysiol.01065.2018.

14. Heo KS, Fujiwara K, Abe J. Shear stress and atherosclerosis. Mol Cells. 2014;37(6):435-40. DOI:10.14348/molcells.2014.0078.

15. Walczak M, Suraj J, Kus K, et al. Towards a comprehensive endothelial biomarkers profiling and endothelium-guided pharmacotherapy. Pharmacol Rep. 2015;67(4):771-7. DOI:10.1016/j.pharep.2015.06.008.

16. Strisciuglio T, De Luca S, Capuano E, et al. Endothelial dysfunction: its clinical value and methods of assessment. Current Atherosclerosis Reports. 2014;16(6):417. DOI:10.1007/s11883-0140417-1.

17. Balta S, Mikhailidis DP, Demirkol S, et al. Endocan: a novel inflammatory indicator in cardiovascular disease? Atherosclerosis. 2015;243(1):339-43. DOI:10.1016/j.atherosclerosis.2015.09.030.

18. Gifford JR, Richardson RS. CORP: ultrasound assessment of vascular function with the passive leg movement technique. J Appl Physiol. 2017;123(6):1708-20. DOI:10.1152/japplphysiol.00557.2017.

19. Wang XS, Yang W, Luo T, et al. Serum endocan levels are correlated with the presence and severity of coronary artery disease in patients with hypertension. Genet Test Mol Biomarkers. 2015;19(3):124-7. DOI:10.1089/gtmb.2014.0274.

20. Schmidt DE, Manca M, Hoefer IE. Circulating endothelial cells in coronary artery disease and acute coronary syndrome. Trends Cardiovasc Med. 2015;25(7):578-87. DOI:10.1016/j.tcm.2015.01.013..

21. Santilli F, Marchisio M, Lanuti P, et al. Microparticles as new markers of cardiovascular risk in diabetes and beyond. Thromb Haemost. 2016;116(2):220-34. DOI:10.1160/TH16-03-0176.

22. Alexandru N, Badila E, Weiss E, et al. Vascular complications in diabetes: microparticles and microparticle associated microRNAs as active players. Biochem Biophys Res Commun. 2016;472(1):1-10. DOI:10.1016/j.bbrc.2016.02.038.

23. Parker B, Al-Husain A, Pemberton P, et al. Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus. Ann Rheum Dis. 2014;73(6):1144-50. DOI:10.1136/annrheumdis-2012-203028.

24. Song R, Chou YI, Kong J, et al. Association of endothelial microparticle with NO, eNOS, ET-1, and fractional flow reserve in patients with coronary intermediate lesions. Biomarkers. 2015; 20(67):429-35. DOI:10.3109/1354750X.2015.1094140.

25. Goumans MJ, Ten Dijke P. TGF-beta signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol. 2018;10(2):a022210. DOI:10.1101/cshperspect.a022210.

26. Jang YS, Choi IH. Contrasting roles of different endoglin forms in atherosclerosis. Immune Netw. 2014;14(5):237-40. DOI:10.4110/in.2014.14.5.237.

27. Jezkova K, Rathouska J, Nemeckova I, et al. High levels of soluble endoglin induce a proinflammatory and oxidativestress phenotype associated with preserved no-dependent vasodilatation in aortas from mice fed a high-fat diet. J Vasc Res. 2016;53(3-4):149-62. DOI:10.1159/000448996.

28. Vitverova B, Blazickova K, Najmanova I, et al. Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis. 2018;271:15-25. DOI:10.1016/j.atherosclerosis.2018.02.008.

29. Varejckova M, Gallardo-Vara E, Vicen M, et al. Soluble endoglin modulates the pro-inflammatory mediators NF-kappaB and IL-6 in cultured human endothelial cells. Life Sci. 2017;175:52-60. DOI:10.1016/j.lfs.2017.03.014.

30. Emeksiz HC, Bideci A, Damar C, et al. Soluble endoglin level increase occurs prior to development of subclinical structural vascular alterations in diabetic adolescents. J Clin Res Pediatr Endocrinol. 2016;8(3):313-20. DOI:10.4274/jcrpe.2906.

31. Gerrits T, Zandbergen M, Wolterbeek R, et al. Endoglin promotes myofibroblast differentiation and extracellular matrix production in diabetic nephropathy. Int J Mol Sci. 2020;21(20):7713. DOI:10.3390/ijms21207713.

32. Ikemoto T, Hojo Y, Kondo H, et al. Plasma endoglin as a marker to predict cardiovascular events in patients with chronic coronary artery diseases. Heart Vessels. 2012;27(4):344-51. DOI:10.1007/s00380-011-0163-z.

33. Redgrave R.E, Tual-Chalot S, Davison B.J, et el. Cardiosphere-derived cells require endoglin for paracrine-mediated angiogenesis. Stem cell reports. 2017;8(5):1287-98. DOI:10.1016/j.stemcr.2017.04.015.

34. Canpolat U, Kocyigit D, Yildirim A. Role of endothelial dysfunction and endocan in atherosclerosis: point of origin or end point? Angiology. 2020;71(5):477. DOI:10.1177/0003319716654627.

35. Rocha SF, Schiller M, Jing D, et al. Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ Res. 2014;115(6):581-90. DOI:10.1161/CIRCRESAHA.115.304718.

36. Lee W, Ku S.K, Kim SW, et al. Endocan elicits severe vascular inflammatory responses in vitro and in vivo. J Cell Physiol. 2014;229(5):620-30. DOI:10.1002/jcp.24485.

37. Sun H, Zhang H, Li K, et al. ESM-1 promotes adhesion between monocytes and endothelial cells under intermittent hypoxia. J Cell Physiol. 2019;234(2):1512-21. DOI:10.1002/jcp.27016.

38. Icli A, Cure E, Cure MC, et al. Endocan levels and subclinical atherosclerosis in patients with systemic lupus erythematosus. Angiology. 2016;67(8):749-55. DOI:10.1177/0003319715616240.

39. De Freitas Caires N, Gaudet A, Portier L, et al. Endocan, sepsis, pneumonia, and acute respiratory distress syndrome. Crit Care. 2018;22(1):280. DOI:10.1186/s13054-018-2222-7.

40. Hsiao SY, Kung CT, Tsai NW, et al. Concentration and value of endocan on outcome in adult patients after severe sepsis. Clin Chim Acta. 2018;483:275-80. DOI:10.1016/j.cca.2018.05.007.

41. Gungor A, Palabiyik S.S, Bayraktutan Z, et al. Levels of endothelial cell-specific molecule-1 (ESM-1) in overt hypothyroidism. Endocr Res. 2016;41(4):275-80. DOI:10.3109/07435800.2015.1135443.

42. Cimen T, Efe TH, Akyel A, et al. Human endothelial cellspecific molecule-1 (endocan) and coronary artery disease and microvascular angina. Angiology. 2016;67(3):846-53. DOI:10.1177/0003319715625827.

43. Kundi H, Balun A, Cicekcioglu H, et al. Admission endocan level may be a useful predictor for in-hospital mortality and coronary severity index in patients with ST-segment elevation myocardial infarction. Angiology. 2017;68(1):46-51. DOI:10.1177/0003319716646932.

44. Musialowska D, Zbroch E, Koc-Zorawska E, et al. Endocan concentration in patients with primary hypertension. Angiology. 2018;69(6):483-9. DOI:10.1177/0003319717736158.

45. Lv Y, Zhang Y, Shi W, et al. The association between endocan levels and subclinical atherosclerosis in patients with type 2 diabetes mellitus. Am J Med Sci. 2017;353(5):433-8. DOI:10.1016/j.amjms.2017.02.004.

46. Balamir I, Ates I, Topcuoglu C, et al. Association of endocan, ischemia-modified albumin, and hsCRP levels with endothelial dysfunction in type 2 diabetes mellitus. Angiology. 2018;69(7):609-16. DOI:10.1177/0003319717740781.

47. Altintas N, Mutlu LC, Akkoyun D.C, et al. Effect of CPAP on new endothelial dysfunction marker, endocan, in people with obstructive sleep apnea. Angiology. 2016;67(4):364-74. DOI:10.1177/0003319715590558.

48. Yilmaz MI, Siriopol D, Saglam M, et al. Plasma endocan levels associate with inflammation, vascular abnormalities, cardiovascular events, and survival in chronic kidney disease. Kidney Int. 2014;86(6):1213-20. DOI:10.1038/ki.2014.227.

49. Zhao T, Kecheng Y, Zhao X, et al. The higher serum endocan levels may be a risk factor for the onset of cardiovascular disease: a meta-analysis. Med (Baltimore). 2018;97(49):e13407. DOI:10.1097/MD.0000000000013407.


For citation:


Abdurakhmanov Z.M., Umarov B.Y., Abdurakhmanov M.M. Novel Biomarkers of Endothelial Dysfunction in Cardiovascular Diseases. Rational Pharmacotherapy in Cardiology. 2021;17(4):612-618. (In Russ.) https://doi.org/10.20996/1819-6446-2021-08-08

Views: 193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)