Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Inflammation and Comorbidity. Are There any Chances to Improve the Prognosis in Patients with Extremely High Cardiovascular Risk?

https://doi.org/10.20996/1819-6446-2021-08-06

Full Text:

Abstract

The review contains actual data on possible approaches aimed at improving the prognosis in a special category of patients with extremely high cardiovascular risk, as well as in patients with recent acute coronary syndrome combined with comorbidity, including multifocal atherosclerosis. Currently, there are no class I recommendations for such patients aimed at reducing the risk of adverse cardiovascular events. It is suggested that suppression of inflammation may be a new therapeutic goal in this category of patients. Given the importance of inflammation in the development and course of atherosclerosis, in recent years there have been repeated attempts to influence the various components of the pro-inflammatory cascade involved in atherogenesis, but not all of them have been successful. Special attention is given to the anti-inflammatory effects of colchicine, a drug that can improve cardiovascular outcomes in patients with proven atherosclerosis. The review provides numerous pathogenetic and clinical evidence for the effectiveness of colchicine in patients with various manifestations of atherosclerosis. It is concluded that colchicine is the most promising anti-inflammatory drug that can improve the outcome of cardiovascular diseases. Thus, there is a need to initiate new clinical trial protocols aimed at studying the anti-inflammatory potential of this drug in patients with extreme cardiovascular risk.

About the Authors

M. V. Zykov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Mikhail V. Zykov

Kemerovo



O. L. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Olga L. Barbarash 

Kemerovo



References

1. Cardiovascular diseases (CVDs). WHO Fact sheets [cited by May 10, 2020. Avalable from: https://www.who.int/ru/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

2. Palladino R, Lee JT, Ashworth M, et al. Associations between multimorbidity, healthcare utilisation and health status: evidence from 16 European countries. Age Ageing. 2016;45(3):431-5. DOI:10.1093/ageing/afw044.

3. Barnett K, Mercer SW, Norbury M, et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37-43. DOI:10.1016/S0140-6736(12)60240-2.

4. Kukharchuk VV, Ezhov MV, Sergienko IV, et al. Diagnostics and correction of lipid metabolism disorders in order to prevent and treat of atherosclerosis Russian recommendations VII revision. Ateroskleroz i Dislipidemii. 2020;1(38):7-42 (In Russ.). DOI:10.34687/2219-8202.JAD.2020.01.0002.

5. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. ESC Clinical Practice Guidelines. Eur Heart J. 2020;41(3):407-77. DOI:10.1093/eurheartj/ehz425.

6. Barbarash OL, Karetnikova VN, Kashtalap VV, et al. The Congress of the American College of Cardiology in review. Complex Issues of Cardiovascular Diseases. 2020;9(2):29-37 (In Russ.). DOI:10.17802/2306-1278-2020-9-2-29-37.

7. Zykov MV, Kashtalap VV, Bykova IS, et al. The relationship between multimorbidity and cardiovascular risk in patients with acute coronary syndrome. Kardiologicheskij Vestnik. 2018;2:59-65 (In Russ.) [Зыков М.В., Кашталап В.В., Быкова И.С., и др. Связь мультиморбидности с риском развития сердечно-сосудистых осложнений у пациентов с острым коронарным синдромом. Кардиологический Вестник. 2018;2:59-65. DOI:10.17116/cardiobulletin201813259.

8. Barbarash OL, Zykov MV, Pecherina TB, et al. The Prognostic Value of Peripheral Artery Diseases in Patients with ST-Segment Elevation Myocardial Infarction. Disease Markers. 2013;35(6):877-882. DOI:10.1155/2013/487807.

9. Canivell S, Muller O, Gencer B, et al. Prognosis of cardiovascular and non-cardiovascular multimorbidity after acute coronary syndrome. PLoS ONE. 2018;13(4):e0195174. DOI:10.1371/journal.pone.0195174.

10. Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur Heart J. 2020;41(6):748-58. DOI:10.1093/eurheartj/ehz474.

11. Hughes MJ, McGettrick HM, Sapey E. Shared mechanisms of multimorbidity in COPD, atherosclerosis and type-2 diabetes: the neutrophil as a potential inflammatory target. Eur Respir Rev. 2020;29(155):190102. DOI:10.1183/16000617.0102-2019.

12. Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci. 2017;18(10):2034; DOI:10.3390/ijms18102034.

13. Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol. 2011;31(7):1506-16. DOI:10.3390/ijms18102034.

14. Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry (Mosc). 2016;81(11):1358-70. DOI:10.1134/S0006297916110134.

15. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657-71. DOI:10.1161/01.cir.92.3.657.

16. Redgrave JN, Gallagher PJ, Lovett JK, Rothwell PM. Critical cap thickness and rupture in symptomatic carotid plaques. Stroke. 2008;39(6):1722-9. DOI:10.1161/STROKEAHA.107.507988.

17. Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6(3):e005543. DOI:10.1161/JAHA.117.005543.

18. Andrés V, Pello OM, Silvestre-Roig C. Macrophage proliferation and apoptosis in atherosclerosis. Curr Opin Lipidol. 2012;23(5):429-38. DOI:10.1097/MOL.0b013e328357a379.

19. Ramji DP, Davies TS. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015;26(6):673-85. DOI:10.1016/j.cytogfr.2015.04.003.

20. Mallat Z, Corbaz A, Scoazec A, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res. 2001;89(7):E41-45. DOI:10.1161/hh1901.098735.

21. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278(5):483-93. Doi:10.1111/joim.12406.

22. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352(1):20-8. DOI:10.1056/NEJMoa042378.

23. Zamani P, Schwartz GG, Olsson AG, et al. Inflammatory biomarkers, death, and recurrent nonfatal coronary events after an acute coronary syndrome in the MIRACL study. J Am Heart Assoc. 2013;2(1):e003103. DOI:https://doi.org/10.1161/JAHA.112.003103.

24. Maradit-Kremers H, Crowson CS, Nicola PJ, et al. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 2005;52(2):402-11. DOI:10.1002/art.20853.

25. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836-43. DOI:10.1056/NEJM200003233421202.

26. Danesh J, Kaptoge S, Mann AG, et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med. 2008;5(4):e78. DOI:10.1371/journal.pmed.0050078.

27. Kaptoge S, Di Angelantonio E, Lowe G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant metaanalysis. Lancet. 2010;375(9709):132-40. DOI:10.1016/S0140-6736(09)61717-7.

28. Arenillas JF, Alvarez-Sabín J, Molina CA, et al. C-reactive protein predicts further ischemic events in first-ever transient ischemic attack or stroke patients with intracranial large-artery occlusive disease. Stroke. 2003;34(10):2463-8. DOI: 10.1161/01.STR.0000089920.93927.A7.

29. Schlager O, Exner M, Mlekusch W, et al. C-reactive protein predicts future cardiovascular events in patients with carotid stenosis. Stroke. 2007;38(4):1263-8. DOI:10.1161/01.STR.0000259890.18354.d2.

30. Sayed N, Huang Y, Nguyen K, et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging. 2021;1:598615. DOI:10.1038/s43587-021-00082-y.

31. Giugliano GR, Giugliano RP, Gibson CM, Kuntz RE. Meta-analysis of corticosteroid treatment in acute myocardial infarction. Am J Cardiol. 2003;91(9):e1055-9. DOI: 10.1016/S0002-9149(03) 00148-6.

32. Vogel RA, Forrester JS. Cooling off hot hearts: a specific therapy for vulnerable plaque? J Am Coll Cardiol. 2013;61(4):e411-2. DOI:10.1016/j.jacc.2012.10.026.

33. Olsen AM, Fosbol EL, Lindhardsen J, et al. Long-term cardiovascular risk of nonsteroidal anti-inflammatory drug use according to time passed after first-time myocardial infarction: a nationwide cohort study. Circulation. 2012;126(16):e1955-63. DOI:10.1161/CIRCULATIONAHA.112.112607.

34. Armstrong PW, Granger CB, Adams PX, et al. The Pexelizumab for acute stelevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA. 2007;297(1):e43-51. DOI:10.1001/jama.297.1.43.

35. Nicholls SJ, Kastelein JJ, Schwartz GG, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA. 2014;311(3):e25262. DOI:10.1001/jama.2013.282836.

36. O'Donoghue ML, Braunwald E, White HD, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA. 2014;312(10):e1006-15. DOI:10.1001/jama.2014.11061.

37. Tardif JC, Tanguay JF, Wright SR, et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol. 2013;61(20):e2048-55. DOI:10.1016/j.jacc.2013.03.003.

38. O'Donoghue ML, Glaser R, Cavender MA, et al. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA. 2016;315(15):1591-9. DOI:10.1001/jama.2016.3609.

39. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-31. DOI:10.1056/NEJMoa1707914.

40. Elkins J, Veltkamp R, Montaner J, et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, doubleblind phase 2 trial. Lancet Neurol. 2017;16(3):217-26. DOI:10.1016/S1474-4422(16)30357-X.

41. Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology. 2001;57(8):1428-34. DOI:10.1212/wnl.57.8.1428.

42. Krams M, Lees KR, Hacke W, et al. Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke. 2003;34(11):25438. DOI:10.1161/01.STR.0000092527.33910.89.

43. Cocco G, Chu DC, Pandolfi S. Colchicine in clinical medicine. A guide for internists. Eur J Intern Med. 2010;21(6):503-8. DOI:10.1016/j.ejim.2010.09.010.

44. Vatutin MT, Smyrnova GS, Tselikova EO. New possibilities in the treatment of cardiovascular disease using colchicine. Arhiv Vnutrennej Mediciny. 2016;3(29):19-24 (In Russ.). DOI:10.20514/2226-6704-2016-6-3-19-24.

45. Chia EW, Grainger R, Harper JL. Colchicine suppresses neutrophil superoxide production in a murine model of gouty arthritis: a rationale for use of low-dose colchicine. Br J Pharmacol. 2008;153(6):1288-95. DOI:10.1038/bjp.2008.20.

46. Alekberova ZS, Barskova VG. Colchicine in rheumatology: yesterday and today. Will there be tomorrow? Sovpemennaja Revmatologija. 2010;4(2):25-9 (In Russ.). DOI:10.14412/1996-7012-2010-598.

47. Marques-da-Silva C, Chaves M, Castro N, et al. Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br J Pharmacol. 2011;163(5):912-26. DOI:10.1111/j.1476-5381.2011.01254.x.

48. Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of Action of Colchicine in the Treatment of Gout. Clin Ther. 2014;36(10):1465-79. DOI:10.1016/j.clinthera.2014.07.017.

49. Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454-60. DOI:10.1038/ni.2550.

50. Wang Y, Viollet B, Terkeltaub R, Liu-Bryan R. AMP-activated protein kinase suppresses urate crystalinduced inflammation and transduces colchicine effects in macrophages. Ann Rheum Dis. 2016;75(1):286-94. DOI:10.1136/annrheumdis-2014-206074.

51. Menche D, Israel A, Karpatkin S. Platelets and Microtubules. Effect of colchicine and D2 O on platelet aggregation and release induced by calcium ionophore A23187. J Clin Invest. 1980;66(2):284-91. DOI: 10.1172/JCI109855.

52. Hollander W, Paddock J, Nagraj S, et al. Effects of anticalcifying and anti-fibrotic drugs on pre-established atherosclerosis in the rabbit. Atherosclerosis. 1979;33(1):111e123. DOI:10.1016/00219150(79)90202-8.

53. Crittenden DB, Lehmann RA, Schneck L, et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J Rheumatol. 2012;39(7):1458-64. DOI:10.3899/jrheum.111533.

54. Solomon DH, Liu CC, Kuo IH, et al. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: a cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016;75(9):1674-9. DOI:10.1136/annrheumdis-2015-207984.

55. Deftereos S, Giannopoulos G, Kossyvakis C, et al. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: a randomized controlled study. J Am Coll Cardiol. 2012;60(18):1790-6. DOI:10.1016/j.jacc.2012.07.031.

56. Deftereos S, Giannopoulos G, Panagopoulou V, et al. Antiinflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail. 2014;2(2):131-7. DOI:10.1016/j.jchf.2013.11.006.

57. Nidorf M, Thompson PL. Effect of colchicine (0.5 mg twice daily) on high-sensitivity C-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am J Cardiol. 2007;99(6):805-7. DOI:10.1016/j.amjcard.2006.10.039.

58. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Lowdose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404-10. DOI:10.1016/j.jacc.2012.10.027.

59. O'Keefe JH, McCallister BD, Bateman TM. Ineffectiveness of colchicine for the prevention of restenosis after coronary angioplasty. J Am Coll Cardiol. 1992;19(7):1597e1600. DOI:10.1016/07351097(92)90624-v.

60. Deftereos S, Giannopoulos G, Angelidis C, et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation. 2015;132(15):1395-403. DOI:10.1161/CIRCULATIONAHA.115.017611.

61. Tardif JC, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine After Myocardial Infarction. N Engl J Med. 2019;381(26):2497-505. DOI:10.1056/NEJMoa1912388.

62. Imazio COACS colchicine for acute coronary syndromes; 2013 (NCT01906749) [cited by May 10, 2020. Avalable from: https:// clinicaltrials.gov/ct2/show/NCT01906749.

63. Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;383(19):1838-47. DOI:10.1056/NEJMoa2021372.

64. Colchicine and spironolactone in patients with STEMI/SYNERGY stent Registry (CLEARSYNERGY; NCT03048825) [cited by May 10, 2020. Avalable from: https://clinicaltrials.gov/ct2/show/NCT03048825.

65. Colchicine for prevention of vascular inflammation in non-cardio embolic stroke (CONVINCE; NCT02898610) [cited by May 10, 2020. Avalable from: https://clinicaltrials.gov/ct2/show/NCT02898610.

66. Hemkens LG, Ewald H, Gloy VL, et al. Colchicine for prevention of cardiovascular events. Cochrane Database Syst Rev. 2016;2016(1):CD011047. DOI:10.1002/14651858.CD011047.pub2.

67. Verma S, Eikelboom JW, Nidorf SM, et al. Colchicine in cardiac disease: a systematic review and metaanalysis of randomized controlled trials. BMC Cardiovasc Disord. 2015;15:1. DOI:10.1186/s12872015-0068-3.

68. Khandkar C, Khandkar C, Vaidya K, Patel S. Colchicine for Stroke Prevention: A Systematic Review and Meta-analysis. Clin Ther. 2019;41(3):582-90. DOI:10.1016/j.clinthera.2019.02.003.


For citation:


Zykov M.V., Barbarash O.L. Inflammation and Comorbidity. Are There any Chances to Improve the Prognosis in Patients with Extremely High Cardiovascular Risk? Rational Pharmacotherapy in Cardiology. 2021;17(4):606-611. (In Russ.) https://doi.org/10.20996/1819-6446-2021-08-06

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)