Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Rotor Drivers in Induction and Maintenance of Atrial Fibrillation

https://doi.org/10.20996/1819-6446-2021-04-16

Full Text:

Abstract

Atrial fibrillation is the most common arrhythmia in clinical practice. It is associated with an increased risk of stroke, chronic heart failure, and sudden cardiac death. Our options of restoring and maintaining sinus rhythm have a very limited effect, both in the case of antiarrhythmic and catheter treatment. Catheter ablation has proven to be a more effective approach than antiarrhythmic therapy. The success rate of the procedure reaches 70%. However, radiofrequency ablation is associated with a risk of complications, with 4.5% of patients likely to develop major complications, including tamponade (1.31%), femoral pseudoaneurysm (0.71%), and death (0.15%). Given the generally recognized dominant role of the pulmonary veins in the induction of atrial fibrillation, their electrical isolation has become the recommended tactic of the catheter approach. In the case of patients with paroxysmal form of atrial fibrillation, the success rate of the procedure reaches 87%. Unfortunately, in the case of persistent forms of atrial fibrillation, the effectiveness of the primary procedure decreases to 28% and reaches 51% with repeated interventions. In addition to the anatomically oriented isolation of the pulmonary veins, a number of strategies have been proposed to reach the secondary zones of atrial fibrillation induction. The results of recent studies on the effectiveness of strategies for ablation of rotor regions and their role in the induction and maintenance of AF may lead to the further development of catheter ablation techniques and an individual radiofrequency ablation approach in a particular patient.

About the Authors

A. A. Kulikov
National Medical Research Center of Cardiology
Russian Federation

Alexey A. Kulikov - eLibrary SPIN 3828-0829

Moscow



O. V. Sapelnikov
National Medical Research Center of Cardiology
Russian Federation

Oleg V. Sapelnikov - eLibrary SPIN 7490-0049

Moscow



T. M. Uskach
National Medical Research Center of Cardiology
Russian Federation

Tatiana M. Uskach - eLibrary SPIN 8752-9657

Moscow



D. I. Cherkashin
National Medical Research Center of Cardiology
Russian Federation

Dmitry I. Cherkashin - eLibrary SPIN 4228-8351

Moscow



I. R. Grishin
National Medical Research Center of Cardiology
Russian Federation

Igor R. Grishin - eLibrary SPIN 3671-5200

Moscow



R. S. Akchurin
National Medical Research Center of Cardiology
Russian Federation

Renat S. Akchurin – eLibrary SPIN 6756-8930

Moscow



References

1. Wann LS, Curtis AB, January CT, et al. Members AATF. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (updating the. 2006 guideline): a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2011;123:104-23. DOI:10.1161/CIR.0b013e3181fa3cf4.

2. Roney CH, Wit AL, Peters NS. Challenges Associated with Interpreting Mechanisms of AF. Arrhythmia & Electrophysiology. 2019;8(4):273-84. DOI:10.15420/aer.2019.08.

3. Dobrev D, Nattel S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet. 2010;375:1212-23. DOI:10.1016/S0140-6736(10)60096-7.

4. Wilber DJ, Pappone C, Neuzil P, et al. ThermoCool AFTI. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;303:333-40. DOI:10.1001/jama.2009.2029.

5. Parkash R, Tang AS, Sapp JL,Wells G. Approach to the catheter ablation technique of paroxysmal and persistent atrial fibrillation: a meta-analysis of the randomized controlled trials. J Cardiovasc Electrophysiol. 2011;22:729-38. DOI:10.1111/j.1540-8167.2011.02010.x.

6. Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:32-8. DOI:10.1161/CIRCEP.109.859116.

7. Cheniti G, Vlachos K, Pambrun T, et al. Atrial Fibrillation Mechanisms and Implications for Catheter Ablation. Front Physiol. 2018;9:1458. DOI:10.3389/fphys.2018.01458.

8. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659-66. DOI:10.1056/NEJM199809033391003.

9. Calkins H, Kuck KH, Cappato R, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace. 2012;14:528-606. DOI:10.1093/europace/eus027.

10. Tzou WS, Marchlinski FE, Zado ES, et al. Long-term outcome after successful catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:237-42. DOI:10.1161/CIRCEP.109.923771.

11. Pappone C, Vicedomini G, Augello G, et al. Radiofrequency catheter ablation and antiarrhythmic drug therapy: a prospective, randomized, 4-year follow-up trial: the APAF study. Circ Arrhythm Electrophysiol. 2011;4:808-14. DOI:10.1161/CIRCEP.111.966408.

12. Medi C, Sparks PB, Morton JB, et al. Pulmonary vein antral isolation for paroxysmal atrial fibrillation: results from long-term follow-up. J Cardiovasc Electrophysiol. 2011;22:137-41. DOI:10.1111/j.1540-8167.2010.01885.x.

13. Weerasooriya R, Khairy P, Litalien J, et al. Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? J Am Coll Cardiol. 2011;57:160-6. DOI:10.1016/j.jacc.2010.05.061.

14. Chao TF, Tsao HM, Lin YJ, et al. Clinical outcome of catheter ablation in patients with nonparoxysmal atrial fibrillation: results of 3-year follow-up. Circ Arrhythm Electrophysiol. 2012;5:514-20. DOI:10.1161/CIRCEP.111.968032.

15. Dixit S, Gerstenfeld EP, Ratcliffe SJ, et al. Single procedure efficacy of isolating all versus arrhythmogenic pulmonary veins on long-term control of atrial fibrillation: a prospective randomized study. Heart Rhythm. 2008;5:174-81. DOI:10.1016/j.hrthm.2007.09.024.

16. Atienza F, Almendral J, Ormaetxe JM, et al, RADAR-AF Investigators. Multicenter comparison of radiofrequency catheter ablation of drivers versus circumferential pulmonary vein isolation in patients with atrial fibrillation. A noninferiority randomized clinical trial. J Am Coll Cardiol. 2014;64:2455-67. DOI:10.1016/j.jacc.2014.09.053.

17. Narayan SM, Krummen DE, Clopton P, et al. Direct or coincidental elimination of stable rotors or focal sources may explain successful atrial fibrillation ablation: on-treatment analysis of the CONFIRM trial (Conventional Ablation for AF with or Without Focal Impulse and Rotor Modulation). J Am Coll Cardiol. 2013;62:138-47. DOI:10.1016/j.jacc.2013.03.021.

18. Narayan SM, Krummen DE, Shivkumar K, et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation with or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol. 2012;60:628-36. DOI:10.1016/j.jacc.2012.05.022.

19. Haissaguerre M, Hocini M, Denis A, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130:530-8. DOI:10.1161/CIRCULATIONAHA.113.005421.

20. Narayan SM, Jalife J. Crosstalk proposal: rotors have been demonstrated to drive human atrial fibrillation. J Physiol. 2014;592:3163-6. DOI:10.1113/jphysiol.2014.271031.

21. Allessie M, de Groot N. Crosstalk opposing view: rotors have not been demonstrated to be the drivers of atrial fibrillation. J Physiol. 2014;592:3167-70. DOI:10.1113/jphysiol.2014.271809.

22. Moe GK. On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn. 1962;CXL:183-8.

23. Allessie MA, Lammers WJEP, Bonke FIM, et al. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. Orlando: Grune & Stratton; 1985. P.265-75.

24. Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res. 2002;54:204-16. DOI:10.1016/S0008-6363(02)00223-7.

25. Li X, Almeida TP, Dastagir N, et al. Standardizing Single-Frame Phase Singularity Identification Algorithms and Parameters in Phase Mapping During Human Atrial Fibrillation. Front Physiol. 2020;11:869. DOI:10.3389/fphys.2020.00869.

26. Konings KT, Kirchhof CJ, Smeets JR, et al. High-density mapping of electrically induced atrial fibrillation in humans. Circulation. 1994;89:1665-80. DOI:10.1161/01.CIR.89.4.1665.

27. Eckstein J, Zeemering S, Linz D, et al. Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation: evidence from simultaneous endo-epicardial high-density activation mapping. Circ Arrhythm Electrophysiol. 2013;6:334-41. DOI:10.1161/CIRCEP.113.000342.

28. de Groot NM, Houben RP, Smeets JL, et al. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation. 2010; 122:1674-82. DOI:10.1161/CIRCULATIONAHA.109.910901.

29. Gerstenfeld EP, Sahakian AV, Swiryn S. Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation. 1992;86:375-82. DOI:10.1161/01.CIR.86.2.375.

30. Atienza F, Almendral J, Jalife J, et al. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm. 2009;6:33-40. DOI:10.1016/j.hrthm.2008.10.024.

31. Berenfeld O, Mandapati R, Dixit S, et al. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorff-perfused sheep heart. J Cardiovasc Electrophysiol. 2000;11:869-79. DOI:10.1111/j.1540-8167.2000.tb00066.x.

32. Chen J, Mandapati R, Berenfeld O, et al. Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc Res. 2000;48:220-32. DOI:10.1016/S0008-6363(00)00177-2.

33. Mansour M, Mandapati R, Berenfeld O, et al. Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation. 2001;103:2631-6. DOI:10.1161/01.CIR.103.21.2631.

34. Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation. 2005;112:789-97. DOI:10.1161/CIRCULA-TIONAHA.104.517011.

35. Sarmast F, Kolli A, Zaitsev A, et al. Cholinergic atrial fibrillation: I(K,ACh) gradients determine unequal left/right atrial frequencies and rotor dynamics. Cardiovasc Res. 2003;59:863-73. DOI:10.1016/S0008-6363(03)00540-6.

36. Jais P, Haissaguerre M, Shah DC, et al. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation. 1997; 95:572-76. DOI:10.1161/01.CIR.95.3.572.

37. Schmitt C, Ndrepepa G, Weber S, et al. Biatrial multisite mapping of atrial premature complexes triggering onset of atrial fibrillation. Am J Cardiol. 2002;89:1381-7. DOI:10.1016/S0002-9149(02)02350-0.

38. Gray RA, Jalife J, Panfilov AV, et al. Mechanisms of cardiac fibrillation. Science 1995;270:1222-3. DOI:10.1126/science.270.5239.1222.

39. Cabo C, Pertsov AM, Davidenko JM, et al. Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle. Biophys J. 1996;70:1105-11. DOI:10.1016/S0006-3495(96)79691-1.

40. Iravanian S, Nabutovsky Y, Kong CR, et al. Functional reentry in cultured monolayers of neonatal rat cardiac cells. Am J Physiol Heart Circ Physiol. 2003;285:H449-H456. DOI:10.1152/ajpheart.00896.2002.

41. Baxter WT, Mironov SF, Zaitsev AV, et al. Visualizing excitation waves inside cardiac muscle using transillumination. Biophys J. 2001;80:516-30. DOI:10.1016/S0006-3495(01)76034-1.

42. Yamazaki M, Filgueiras-Rama D, Berenfeld O, et al. Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation. Prog Biophys Mol Biol. 2012;110:269- 77. DOI:10.1016/j.pbiomolbio.2012.08.004.

43. Filgueiras-Rama D, Price NF, Martins RP, et al. Long-term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ Arrhythm Electrophysiol. 2012;5:1160-7. DOI:10.1161/CIRCEP.111.969519.

44. Martins RP, Kaur K, Hwang E, et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation. 2014;129:1472-82. DOI:10.1161/CIR-CULATIONAHA.113.004742.

45. Climent AM, Guillem MS, Fuentes L, et al. The role of atrial tissue remodeling on rotor dynamics: an in-vitro study. Am J Physiol Heart Circ Physiol. 2015;309:H1964-H1973. DOI:10.1152/ajp-heart.00055.2015.

46. Mandapati R, Skanes A, Chen J, et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation. 2000;101:194-9. DOI:10.1161/01.CIR.101.2.194.

47. Berenfeld O, Zaitsev AV, Mironov SF, et al. Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ Res. 2002;90:1173-80. DOI:10.1161/01.RES.0000022854.95998.5C.

48. Kalifa J, Tanaka K, Zaitsev AV, et al. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation. 2006;113:626-33. DOI:10.1161/CIRCULATIONAHA.105.575340.

49. Zlochiver S, Yamazaki M, Kalifa J, et al. Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm. 2008;5:846-54. DOI:10.1016/j.hrthm.2008.03.010.

50. Yamazaki M, Vaquero L.M, Hou L, et al. Mechanisms of stretch-induced atrial fibrillation in the presence and the absence of adrenocholinergic stimulation: interplay between rotors and focal discharges. Heart Rhythm. 2009;6:1009-17. DOI:10.1016/j.hrthm.2009.03.029.

51. Berenfeld O, Pertsov AM. Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropy. J Theor Biol. 1999;199:383-94. DOI:10.1006/jtbi.1999.0965.

52. Wellner M, Berenfeld O, Jalife J, et al. Minimal principle for rotor filaments. Proc Natl Acad Sci USA. 2002;99:8015-18. DOI:10.1073/pnas.112026199.

53. Cherry EM, Ehrlich JR, Nattel S, et al. Pulmonary vein reentry - properties and size matter: insights from a computational analysis. Heart Rhythm. 2007;4:1553-62. DOI:10.1016/j.hrthm.2007.08.017.

54. Calvo CJ, Deo M, Zlochiver S, et al. Attraction of rotors to the pulmonary veins in paroxysmal atrial fibrillation: a modeling study. Biophys J. 2014;106:1811-21. DOI:10.1016/j.bpj.2014.02.030.

55. Cha TJ, Ehrlich JR, Zhang L, et al. Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation. 2005;111:728- 35. DOI:10.1161/01.CIR.0000155240.05251.D0.

56. Yamazaki M, Mironov S, Taravant C, et al. Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovasc Res. 2012;94:48-57. DOI:10.1093/cvr/cvr357.

57. Hansen BJ, Zhao J, Csepe TA, et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J. 2015;36:2390-401. DOI:10.1093/eurheartj/ehv233.

58. Tanaka K, Zlochiver S, Vikstrom KL, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res. 2007;101:839-47. DOI:10.1161/CIRCRESAHA.107.153858.

59. Pandit S.V, Berenfeld O, Anumonwo J, et al. Ionic determinants of functional reentry in a 2-d model of human atrial cells during simulated chronic atrial fibrillation. Biophys J. 2005;88:3806-21. DOI:10.1529/biophysj.105.060459.

60. Samie FH, Mandapati R, Gray RA, et al. A mechanism of transition from ventricular fibrillation to tachycardia: effect of calcium channel blockade on the dynamics of rotating waves. Circ Res. 2000;86:684- 91. DOI:10.1161/01.RES.86.6.684.

61. Bollmann A, Sonne K, Esperer HD, et al. Patients with persistent atrial fibrillation taking oral verapamil exhibit a lower atrial frequency on the ECG. Ann Noninvasive Electrocardiol. 2002;7:92-7. DOI:10.1111/j.1542-474X.2002.tb00148.x.

62. Filgueiras-Rama D, Martins RP, Mironov S, et al. Chloroquine terminates stretch-induced atrial fibrillation more effectively than flecainide in the sheep heart. Circ Arrhythm Electrophysiol. 2012;5:561- 70. DOI:10.1161/CIRCEP.111.966820.

63. Kalifa J, Jalife J, Zaitsev A.V, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation. 2003;108:668-71. DOI:10.1161/01.CIR.0000086979.39843.7B.

64. Schuessler RB, Grayson TM, Bromberg BI, et al. Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium. Circ Res. 1992;71:1254-67. DOI:10.1161/01.RES.71.5.1254.

65. Atienza F, Almendral J, Moreno J, et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation. 2006;114:2434-42. DOI:10.1161/CIRCULATIONAHA.106.633735.

66. Kabell G, Buchanan LV, Gibson JK, et al. Effects of adenosine on atrial refractoriness and arrhythmias. Cardiovasc Res. 1994;28:1385-9. DOI:10.1093/cvr/28.9.1385.

67. Belardinelli L, Shryock J.C, Song Y, et al. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J. 1995;9:359-65. DOI:10.1096/fasebj.9.5.7896004.

68. Khositseth A, Clapham DE, Ackerman MJ. Intracellular signaling and regulation of cardiac ion channels. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology—From Cell to Bedside. Philadelphia, PA: W.B. Saunders;. 2004. P33-41. DOI:10.1016/B0-7216-0323-8/50007-5.

69. Sanders P, Berenfeld O, Jais P, et al. Localization of maximal dominant frequency sources correlates with the termination of atrial fibrillation during catheter ablation. Heart Rhythm. 2004;1:S12. DOI:10.1016/j.hrthm.2004.03.012.

70. Berenfeld O. Quantifying activation frequency in atrial fibrillation to establish underlying mechanisms and ablation guidance. Heart Rhythm. 2007;4:1225-34. DOI:10.1016/j.hrthm.2007.05.004.

71. Lin WS, Tai CT, Hsieh MH, et al. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pul- monary vein ectopy. Circulation. 2003;107:3176-83. DOI:10.1161/01.CIR.0000074206.52056.2D.

72. Sahadevan J, Ryu K, Peltz L, et al. Epicardial mapping of chronic atrial fibrillation in patients: preliminary observations. Circulation. 2004;110:3293-9. DOI:10.1161/01.CIR.0000147781.02738.13.

73. Lazar S, Dixit S, Marchlinski FE, et al. Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans. Circulation. 2004;110:3181-6. DOI:10.1161/01.CIR.0000147279.91094.5E.

74. Lin YJ, Tai CT, Kao T, et al. Frequency analysis in different types of paroxysmal atrial fibrillation. J Am Coll Cardiol. 2006;47:1401-7. DOI:10.1016/j.jacc.2005.10.071.

75. Guillem MS, Climent AM, Millet J, et al. Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ Arrhythm Electrophysiol. 2013;6:294-301. DOI:10.1161/CIRCEP.112.000167.

76. Voigt N, Trausch A, Knaut M, et al. Left-to-right atrial inward-rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:472- 80. DOI:10.1161/CIRCEP.110.954636.

77. Hocini M, Nault I, Wright M, et al. Disparate evolution of right and left atrial rate during ablation of longlasting persistent atrial fibrillation. J Am Coll Cardiol. 2010;55:1007-16. DOI:10.1016/j.jacc.2009.09.060.

78. Ghoraani B, Dalvi R, Gizurarson S, et al. Localized rotational activation in the left atrium during human atrial fibrillation: relationship to complex fractionated atrial electrograms and low-voltage zones. Heart Rhythm. 2013;10:1830-8. DOI:10.1016/j.hrthm.2013.09.007.

79. Narayan SM, Shivkumar K, Krummen DE, et al. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ Arrhythm Electrophysiol. 2013;6:58- 67. DOI:10.1161/CIRCEP.111.977264.

80. Berenfeld O, Oral H. The quest for rotors in atrial fibrillation: different nets catch different fishes. Heart Rhythm. 2012;9:1440-1. DOI:10.1016/j.hrthm.2012.04.029.

81. Swarup V, Baykaner T, Rostamian A, et al. Stability of rotors and focal sources for human atrial fibrillation: focal impulse and rotor mapping (FIRM) of AF sources and fibrillatory conduction. J Cardiovasc Electrophysiol. 2014;25:1284-92. DOI:10.1111/jce.12559.

82. Lee G, Kumar S, Teh A, et al. Epicardial wave mapping in human long-lasting persistent atrial fibrillation: transient rotational circuits, complex wavefronts, and disorganized activity. Eur Heart J. 2014;35:86- 97. DOI:10.1093/eurheartj/eht267.

83. Lee S, Sahadevan J, Khrestian CM, et al. High density mapping of atrial fibrillation during vagal nerve stimulation in the canine heart: restudying the Moe hypothesis. J Cardiovasc Electrophysiol. 2013;24:328-35. DOI:10.1111/jce.12032.

84. Allessie M, de Groot N. Rebuttal from Maurits Allessie and Natasja de Groot. J Physiol. 2014;592:3173. DOI:10.1113/jphysiol.2014.275404.

85. Narayan SM, Jalife J. Rebuttal from Sanjiv M. Narayan and Jose Jalife. J Physiol. 2014;592:3171. DOI:10.1113/jphysiol.2014.275396.

86. Benharash P, Buch E, Frank P, et al. Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation. Circ Arrhythm Electrophysiol. 2015;8:554-61. DOI:10.1161/CIRCEP.115.002721.

87. Jalife J, Filgueiras-Rama D, Berenfeld O. Response to Letter by Jalife et al. Regarding Article, “Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation”. Circ Arrhythm Electrophysiol. 2015;8:1296-8. DOI:10.1161/CIRCEP.115.003362.


For citation:


Kulikov A.A., Sapelnikov O.V., Uskach T.M., Cherkashin D.I., Grishin I.R., Akchurin R.S. Rotor Drivers in Induction and Maintenance of Atrial Fibrillation. Rational Pharmacotherapy in Cardiology. 2021;17(2):270-277. (In Russ.) https://doi.org/10.20996/1819-6446-2021-04-16

Views: 203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)