Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Pharmacogenetics as a Way for Personalizing Diuretic Therapy: Focus on Torasemide

https://doi.org/10.20996/1819-6446-2021-02-04

Full Text:

Abstract

Optimizing diuretic therapy in patients with chronic heart failure is a complicated problem with many unresolved questions. Diuretics take an important place in the treatment of heart failure, which are used in almost 80% of cases. Currently, there are not enough clinical studies, which comparative effectiveness of loop diuretics, as well as studies aimed at personalizing diuretic therapy. Torasemide has several advantages over other loop diuretics; high bioavailability, longer half-life and duration of action provide predictable diuresis. The presence of favorable neurohormonal effects, consisting in a decrease of sympathetic activity and inhibition of the renin-angiotensin-aldosterone system, leads to the fact that hypokalemia rarely occurs. In addition, torasemide slows development of myocardial fibrosis and fosters reverse ventricular remodelling. The use of personalization methods is one of the ways to increase the efficiency and safety of pharmacotherapy with diuretics. The polymorphism of genes encoding systems of biotransformation and transporters of drug is an important factor that determines the individual characteristics of a patient. Pharmacogenetics of torasemide may be of significant importance for pharmacokinetics and pharmacodynamics, influencing the intensity of the diuretic effect and side effects. The clearance of torasemide after oral administration may vary by 47% due to genetic characteristics: the participation of the OATP1B1 polymorphism is approximately 15.5%, the CYP2C9 polymorphism is 20%, and the OAT1 and OAT4 polymorphisms are 10%. Due to the significant differences in the pharmacokinetics of torasemide, further study of the pharmacodynamic characteristics of torasemide in patients with genetic polymorphism is necessary.

About the Authors

N. M. Gafurova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Nupaysat M. Gafurova

Moscow

eLibrary SPIN 9049-3287



E. V. Shikh
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Evgenia V. Shikh

Moscow

eLibrary SPIN 2397-8414



O. D. Ostroumova
I.M. Sechenov First Moscow State Medical University (Sechenov University); Russian Medical Academy of Continuous Professional Education
Russian Federation

Olga D. Ostroumova

Moscow

eLibrary SPIN 3910-6585



References

1. Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385(9970):812-24. DOI:10.1016/S0140-6736(14)61889-4.

2. Damman K., Kjekshus J., Wikstrand J., et al. Loop diuretics, renal function and clinical outcome in patients with heart failure and reduced ejection fraction. Eur J Heart Fail. 2016;18(3):328-36. DOI:10.1002/ejhf.462.

3. Greene S.J., Mentz R.J. Potential advantages of torsemide in patients with heart failure: more than just a “water pill”? Eur J Heart Fail. 2018;20(3):471-473. DOI:10.1002/ejhf.1024.

4. Galve E., Mallol A., Catalan R., et al. Clinical and neurohumoral consequences of diuretic withdrawal in patients with chronic, stabilized heart failure and systolic dysfunction. Eur J Heart Fail. 2005;7(5):892-8. DOI:10.1016/j.ejheart.2004.09.006.

5. Pham D., Grodin J.L. Dilemmas in the Dosing of Heart Failure Drugs: Titrating Diuretics in Chronic Heart Failure. Card Fail Rev. 2017;3(2):108-12. DOI:10.15420/cfr.2017:10:1.

6. Sychev D.A. Recommendations on the use of pharmacogenetic testing in clinical practice. Kachestvennaya Klinicheskaya Praktika. 2011;(1):3-10 (In Russ.)

7. Kukes V.G. Clinical Pharmacology: a textbook for medical school. Fourth edition. Moscow: GEOTARMedia; 2009 (In Russ.) [Кукес В.Г. Клиническая фармакология: учебник для вузов. 4-е издание. Москва: ГЭОТАР-Медиа; 2009].

8. Vormfelde S.V., Toliat M.R., Schirmer M., et al. The polymorphisms Asn130Asp and Val174Ala in OATP1B1 and the CYP2C9 allele *3 independently affect torsemide pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;83(6):815-7. DOI:10.1038/sj.clpt.6100404.

9. Lynch T., Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391-6.

10. Rettie A.E., Jones J.P. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol. 2005;45:477-94. DOI:10.1146/annurev.pharmtox.45.120403.095821.

11. Daly A.K., Rettie A.E., Fowler D.M., Miners J.O. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med. 2017;8(1). pii: E1. DOI:10.3390/jpm8010001.

12. Sychev D.A., Anikin G.S., Belolipetskaya V.G., et al. Clinical pharmacogenetics of angiotensin II receptor blockers: new perspectives of pharmacotherapy individualization Cardiovascular Therapy and Prevention. 2006;5(2):100-5 (In Russ.)

13. Padmanabhan S. Handbook of Pharmacogenomics and Stratified Medicine. San Diego, USA: Elsevier Inc; 2014. DOI:10.1016/C2010-0-67325-1.

14. Roth M., Obaidat A., Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260-87. DOI:10.1111/j.1476-5381.2011.01724.x.

15. Nigam S.K. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu Rev Pharmacol Toxicol. 2018;58:663-87. DOI:10.1146/annurev-pharmtox-010617-052713.

16. Vormfelde S.V., Engelhardt S., Zirk A., Meineke I., et al. CYP2C9 polymorphisms and the interindividual variability in pharmacokinetics and pharmacodynamics of the loop diuretic drug torsemide. Clin Pharmacol Ther. 2004;76(6):557-66. DOI:10.1016/j.clpt.2004.08.024.

17. Schwartz S., Brater D.C., Pound D., et al. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide in patients with cirrhosis. Clin Pharmacol Ther. 1993;54(1):90-7. DOI:10.1038/clpt.1993.116

18. Kirchheiner J., Bauer S., Meineke I., et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics. 2002;12(2):101-9. DOI:10.1097/00008571-200203000-00004.

19. Thijssen H.H., Drittij M.J., Vervoort L.M., de Vries-Hanje J.C. Altered pharmacokinetics of R- and Sacenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther. 2001;70(3):292-8. DOI:10.1067/mcp.2001.117936.

20. Scordo M.G., Pengo V., Spina E., et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther. 2002;72(6):702-10. DOI:10.1067/mcp.2002.129321.

21. Miners J.O., Coulter S., Birkett D.J., Goldstein J.A.Torsemide metabolism by CYP2C9 variants and other human CYP2C subfamily enzymes. Pharmacogenetics. 2000;10(3):267-70. DOI:10.1097/00008571-200004000-00008.

22. Yasar U., Forslund-Bergengren C., Tybring G., et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther. 2002;71(1):89-98. DOI:10.1067/mcp.2002.121216.

23. Werner D., Werner U., Meybaum A., et al. Determinants of steady-state torasemide pharmacokinetics: impact of pharmacogenetic factors, gender and angiotensin II receptor blockers. Clin Pharmacokinet. 2008;47(5):323-32. DOI:10.2165/00003088-200847050-00003.

24. Vormfelde S.V., Schirmer M., Hagos Y., et al. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. Br J Clin Pharmacol. 2006;62(3):323-35. DOI:10.1111/j.1365-2125.2006.02655.x.


For citation:


Gafurova N.M., Shikh E.V., Ostroumova O.D. Pharmacogenetics as a Way for Personalizing Diuretic Therapy: Focus on Torasemide. Rational Pharmacotherapy in Cardiology. 2021;17(1):119-123. (In Russ.) https://doi.org/10.20996/1819-6446-2021-02-04

Views: 182


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)