Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Healthy Diet: New Rations for Individual Use

https://doi.org/10.20996/1819-6446-2020-12-12

Full Text:

Abstract

Nutrition is one of the most significant factors influencing the state of health, the development of diseases and the generally the human longevity. The nature of nutrition, which has a protective effect, is the basis of the healthy diet. Among healthy nutritious rations, there are those that have developed naturally, formed from the cultural food heritage and later were made in scientific nutritional recommendations. These are such diets as the Mediterranean type of food, the Scandinavian diet, the Tibetan style of food, etc. At the same time, there are diets specially developed by specialists for specific purposes. All of them correspond to the basic principles of the healthy diet: balance, usefulness and energy balance. This article offers an overview of the use of individual diets that have been developed by nutritionists, such as the intermittent fasting diet, the Paleo diet, and the DASH (Dietary Approaches to Stop Hypertension) diet. The article discusses the differences and advantages of these dietary approaches, presents the results of effectiveness, considers the limitations and features of their use.

About the Authors

O. B. Shvabskaia
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Olga B. Shvabskaia - Researcher, Laboratory of Nutritional Epidemiology, National Medical Research Center for Therapy and Preventive Medicine.
Petroverigsky per. 10, Moscow, 101990.



N. S. Karamnova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Natalia S. Karamnova - MD, PhD, Head of Laboratory of Nutritional Epidemiology, National Medical Research Center for Therapy and Preventive Medicine.
Petroverigsky per. 10, Moscow, 101990.



O. V. Izmailova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Olga V. Izmailova - MD, PhD, Senior Researcher, Department of Primary Prevention of Chronic Noncommunicable Diseases, National Medical Research Center for Therapy and Preventive Medicine.
Petroverigsky per. 10, Moscow, 101990.



References

1. WHO Regional Office for Europe Food and health in Europe: a new basis for action. WHO regional publications. European series; №96. Copenhagen: WNO; 2004 [cited by Mar 28, 2020]. Available from: https://www.who.int/nutrition/publications/policies/isbn928901363X/en/.

2. WHO: Healthy diet. [cited by Mar 28, 2020]. Available from: https://www.who.int/news-room/fact-sheets/detail/healthy-diet.

3. WHO Global action plan for the prevention and control of noncommunicable diseases 2013-2020. World Health Organization. Geneva: WHO; 2014 [cited by Mar 28, 2020]. Available from: https://www.who.int/nmh/publications/ncd-action-plan/en/.

4. Healthy nutrition: plan of action to develop regional programmes in the Russian Federation. Report on a meeting: Arkhangelsk, Russian Federation, 10-20 September 2000. Copenhagen: WNO; 2001 [cited by Mar 28, 2020]. Available from: https://www.euro.who.int/__data/assets/pdf_file/0004/120298/E73183.pdf.

5. Methodical recommendations MR 2.3.1.2432-08 Norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation. Methodical recommendations. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2009 [cited by Mar 28, 2020]. Available from: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=4583 (In Russ.)

6. Aburto N.J., Hanson S., Gutierrez H., at al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and metaanalyses. BMJ. 2013;346:f1378. DOI:10.1136/bmj.f1378.

7. Aburto N.J., Ziolkovska A., Hooper L., at al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346:f1326. DOI:10.1136/bmj.f1326.

8. He F.J., Li J., Macgregor G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. DOI:10.1136/bmj.f1325.

9. He F.J., MacGregor G.A. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet. 2011;378(9789):380-2. DOI:10.1016/S0140-6736(11)61174-4.

10. Taylor R.S., Ashton K.E., Moxham T., et al. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review). Am J Hypertens. 2011;24(8):843-53. DOI:10.1038/ajh.2011.115.

11. WHO Guideline: Potassium intake for adults and children. Geneva: WHO; 2012 [cited by Mar 28, 2020]. Available from: https://www.who.int/publications-detail/9789241504829.

12. WHO Guideline: Sodium intake for adults and children. Geneva: WHO; 2012 [cited by Mar 28, 2020]. Available from: https://www.who.int/publications-detail/9789241504836].

13. Appel L.J., Moore T.J., Obarzanek E., et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117-24. DOI:10.1056/NEJM199704173361601.

14. Svetkey L.P., Sacks F.M., Obarzanek E., et al. The DASH Diet, Sodium Intake and Blood Pressure Trial (DASH-sodium): Rationale and Design. DASH-Sodium Collaborative Research Group. J Am Diet Assoc.1999;99(8):96-104. DOI:10.1016/S0002-8223(99)00423-X.

15. Ge L., Sadeghirad B., Ball G.D.C., et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ. 2020;369:m696. DOI:10.1136/bmj.m696.

16. Sacks F.M., Svetkey L.P., Vollmer W.M., et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med. 2001;344(1):3-10. DOI:10.1056/NEJM200101043440101.

17. Saneei P., Salehi-Abargouei A., Esmaillzadeh A., Azadbakht L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: a systematic review and meta-analysis on randomized controlled trials. Nutr Metab Cardiovasc Dis. 2014;24(12):1253-61. DOI:10.1016/j.nu-mecd.2014.06.008.

18. Chiavaroli L., Viguiliouk E., Nishi S.K., et al. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients. 2019;11(2):338. DOI:10.3390/nu11020338.

19. Sacks F.M., Appel L.J., Moore T.J., et al. A dietary approach to prevent hypertension: a review of the Dietary Approaches to Stop Hypertension (DASH) Study. Clin Cardiol. 1999;22(7):III6-10. DOI: 10.1002/clc.4960221503.

20. Siervo M., Lara J., Chowdhury S., et al. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015;113(1):1-15. DOI:10.1017/S0007114514003341.

21. Maddock J., Ziauddeen N., Ambrosini G.L., et al. Adherence to a Dietary Approaches to Stop Hypertension (DASH)-type diet over the life course and associated vascular function: a study based on the MRC 1 946 British birth cohort. Br J Nutr. 2018;119(5):581 -9. DOI:10.1017/S0007114517003877.

22. Blumenthal J.A., Babyak M.A., Hinderliter A., et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med. 2010;170(2):126-35. DOI:10.1001/archinternmed.2009.470.

23. Jacobs S., Harmon B.E., Boushey C.J., et al. A priori-defined diet quality indexes and risk of type 2 diabetes: the multiethnic cohort. Diabetologia. 2015;58(1):98-112. DOI:10.1007/s00125-014-3404-8.

24. Jannasch F, Kroger J., Schulze M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J Nutr. 2017;147(6):1174-82. DOI: 10.3945/jn.116.242552.

25. Shirani F., Salehi-Abargouei A., Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29(7-8):939-47. DOI:10.1016/j.nut.2012.12.021.

26. de Paula T Р, Steemburgo T., de Almeida J.C., et al. The role of Dietary Approaches to Stop Hypertension (DASH) diet food groups in blood pressure in type 2 diabetes. Br J Nutr. 2012;108(1):155-62. DOI:10.1017/S0007114511005381.

27. Chatterjee R., Yeh H.C, Edelman D., Brancati F. Potassium and risk of Type 2 diabetes. Expert Rev Endocrinol Metab. 2011;6(5):665-72. DOI:10.1586/eem.11.60.

28. Villegas R., Gao Y.T., Yang G., et al. Dietary calcium and magnesium intakes and the risk of type 2 diabetes: the Shanghai Women's Health Study. Am J Clin Nutr. 2009;89(4):1059-67. DOI:10.3945/ajcn.2008.27182.

29. Soltani S., Arablou T., Jayedi A., Salehi-Abargouei A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Nutr J. 2020;19(1):37. DOI:10.1186/s12937-020-00554-8.

30. Sakhaei R., Shahvazi S., Mozaffari-Khosravi H., et al. The Dietary Approaches to Stop Hypertension (DASH)-Style Diet and an Alternative Mediterranean Diet are Differently Associated with Serum Inflammatory Markers in Female Adults. Food Nutr Bull. 2018;39(3):361-76. DOI:10.1177/0379572118783950.

31. Kim H., Andrade F.C. Diagnostic status of hypertension on the adherence to the Dietary Approaches to Stop Hypertension (DASH) diet. Prev Med Rep. 2016;4:525-31. DOI:10.1016/j.pmedr.2016.09.009.

32. Banerjee T., Crews D.C., Wesson D.E., et al. High Dietary Acid Load Predicts ESRD among Adults with CKD. J Am Soc Nephrol. 2015;26(7):1693-700. DOI:10.1681/ASN.2014040332.

33. Goraya N., Simoni J., Jo C.H., Wesson D.E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8(3):371-81. DOI:10.2215/CJN.02430312.

34. Banerjee T., Crews D.C., Wesson D.E., et al. Dietary Acid Load and Chronic Kidney Disease Among Adults in the United States. BMC Nephrol. 2014;15:137. DOI:10.1186/1471-2369-15-137.

35. Rebholz C.M., Crews D.C., Grams M.E., et al. DASH (Dietary Approaches to Stop Hypertension) diet and risk of subsequent kidney disease. Am J Kidney Dis. 2016;68(6):853-61. DOI:10.1053/j.ajkd.2016.05.019.

36. Bach K.E., Kelly J.T., Palmer S.C., et al. Healthy Dietary Patterns and Incidence of CKD: A Meta-Analysis of Cohort Studies. Clin J Am Soc Nephrol. 2019;14(10):1441-9. DOI:10.2215/CJN.00530119.

37. National Kidney Foundation KDOQI Clinical practice guideline for nutrition in chronic kidney disease: 2019 Update. Public Review DRAFT. October 2019 [cited by Mar 28, 2020]. Available from: https://www.kidney.org/professionals/kdoqi-guidelines-commentary-nutrition].

38. Tyson С.С., Nwankwo С., Lin P.-H., Svetkey L. P. The Dietary Approaches to Stop Hypertension (DASH). Eating Pattern in Special Populations. Curr Hypertens Rep. 2012;14(5):388-96. DOI:10.1007/s11906-012-0296-1.

39. Cardiovascular prevention 2017. National guidelines. Russian Journal of Cardiology. 2018;(6):7-122 (In Russ.) DOI:10.15829/1560-4071-2018-6-7-122.

40. Whelton P.K., Carey R. M., Aronow W. S., et al. 2017ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269-324. DOI:10.1161/HYP.0000000000000066.

41. de Boer I.H., Bangalore S., Benetos А., et al. Diabetes and Hypertension: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(9):1273-84. DOI:10.2337/dci17-0026.

42. Evert A.B., Dennison M., Gardner C.D., et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care. 2019;42(5):731-54. DOI:10.2337/dci19-0014.

43. Meschia J.F., Bushnell C., Boden-Albala B., et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(12):3754-832. DOI:10.1161/STR.0000000000000046.

44. Tinsley G.M., La Bounty P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev. 2015;73(10):661-74. DOI:10.1093/nutrit/nuv041.

45. Mattson M.P., Longo V.D., Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46-58. DOI:10.1016/j.arr.2016.10.005.

46. Alhamdan B.A., Garcia-Alvarez A., Alzahrnai A.H., et al. Alternate-day versus daily energy restriction diets: which is more effective for weight loss? A systematic review and meta-analysis. Obes Sci Pract. 2016;2(3):293-302. DOI:10.1002/osp4.52.

47. Malinowski B., Zalewska K., W^sierska A., et al. Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients. 2019;11(3):673. DOI:10.3390/nu11030673.

48. Patterson R.E., Laughlin G.A., LaCroix A.Z., et al. Intermittent Fasting and Human Metabolic Health. J Acad Nutr Diet. 2015;115(8):1203-12. DOI:10.1016/j.jand.2015.02.018.

49. Trepanowski J.F., Kroeger C.M., Barnosky A., et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern Med. 2017;177(7):930-8. DOI:10.1001/jamainternmed.2017.0936.

50. Varady K.A., Bhutani S., Klempel M.C., et al. Alternate day fasting for weight loss innormal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12(1):146. DOI:10.1186/1475-2891-12-146.

51. Harvie M., Wright C., Pegington M., et al. The effect of intermittent energy and carbohydrate restriction v daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 2013;110(8):1534-47. DOI:10.1017/S0007114513000792.

52. Sutton E.F., Beyl R., Early K.S., et al. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27(6):1212-21.e3. DOI:10.1016/j.cmet.2018.04.010.

53. Harvie M.N., Pegington M., Mattson M.P., et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond). 2011;35(5):714-27. DOI:10.1038/ijo.2010.171.

54. Martens C.R., Rossman M.J., Mazzo M.R., et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience. 2020;42(2):667-86. DOI:10.1007/s11357-020-00156-6.

55. Horne B.D., Muhlestein J.B., Anderson J.L. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr. 2015;102(2):464-70. DOI:10.3945/ajcn.115.109553.

56. Dong T.A., Sandesara P.B., Dhindsa D.S., et al. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am J Med. 2020;S0002-9343(20)30335-1. DOI:10.1016/j.amjmed.2020.03.030.

57. Cordain L., Miller J.B., Eaton S.B., et al. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am J Clin Nutr. 2000;71(3):682-92. DOI:10.1093/ajcn/71.3.682.

58. O'Dea K. Westernisation, insulin resistance and diabetes in Australian aborigines. Med J Aust. 1991;155(4):258-64.

59. Manheimer E.W., van Zuuren E.J., Fedorowicz Z., Pijl H. Paleolithic nutrition for metabolic syndrome: systematic review and meta-analysis. Am J Clin Nutr. 2015;102(4):922-32. DOI:10.3945/ajcn.115.113613.

60. Myles I.A. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J. 2014;13:61. DOI:10.1186/1475-2891-13-61.

61. Mellberg C., Sandberg S., Ryberg M., et al. Long-term effects of a Palaeolithic-type diet in obese postmenopausal women: a 2-year randomized trial. Eur J Clin Nutr. 2014;68(3):350-7. DOI:10.1038/ejcn.2013.290.

62. Jonsson T., Granfeldt Y, Ahren B., et al. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol. 2009;8:35. DOI:10.1186/1475-2840-8-35.

63. Boers I., Muskiet F.A.J, Berkelaar E., et al. Favourable effects of consuming a Palaeolithic-type diet on characteristics of the metabolic syndrome: a randomized controlled pilot-study. Lipids Health Dis. 2014;13:160. DOI:10.1186/1476-511X-13-160.

64. Frassetto L.A., Schloetter M., Mietus-Synder M., et al. Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur J Clin Nutr. 2009;63(8):947-55. DOI:10.1038/ejcn.2009.4.

65. Genoni A., Lo J., Lyons-Wall P., Devine A. Compliance, Palatability and Feasibility of PALEOLITHIC and Australian Guide to Healthy Eating Diets in Healthy Women: A 4-Week Dietary Intervention. Nutrients. 2016;8(8):481. DOI:10.3390/nu8080481.

66. Lindeberg S., Jonsson T., Granfeldt Y., et al. Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia. 2007;50(9):1795-807. DOI:10.1007/s00125-007-0716-y.


For citation:


Shvabskaia O.B., Karamnova N.S., Izmailova O.V. Healthy Diet: New Rations for Individual Use. Rational Pharmacotherapy in Cardiology. 2020;16(6):958-965. (In Russ.) https://doi.org/10.20996/1819-6446-2020-12-12

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)