Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Chronic Kidney Disease: Current State of the Problem

https://doi.org/10.20996/1819-6446-2020-11-06

Full Text:

Abstract

Chronic kidney disease (CKD) is characterized by increasing prevalence, catalyzing properties in relation to cardiovascular and general mortality, and, in most cases, is asymptomatic, which means late diagnostic verifiability. The global average prevalence of CKD is 13.4%, and CKD C3-5 is 10.6%. The main causes of CKD C5 are diabetes mellitus (DM, 46.9%), hypertension (28.8%) and to a lesser extent, glomerulonephritis (7.1%) and polycystic diseases (2.8%), while other causes account for a total of 14.4%. Despite the simple diagnosis of CKD, one of the key problems of modern therapeutic and pediatric clinics is its low detection rate at the early stages, which, according to some data, reaches 96.6%. This review provides data on the criteria for the diagnosis of CKD, as well as more detailed consideration of the course of CKD in patients with DM, hypertension, and heart failure. Attention is paid to the medicinal origin of CKD, as well as to the development of anxiety and depressive disorders in CKD. General issues of treatment of patients with CKD are considered in detail. Lifestyle changes are an important part of the fight against the development and progression of CKD. Currently, Smoking, alcohol, and physical inactivity have been shown to have a harmful effect on the risk of developing and progressing CKD. Diet plays a certain preventive role. The main drugs with nephroprotective properties are angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists. Both classes of drugs are effective in proteinuric forms of nephropathies and in combination/association of CKD with diabetes or hypertension. The review also provides data on the nephroprotective properties of mineralocorticoid receptor antagonists, endothelin receptor antagonists, and sodium-glucose co-transporter-2 inhibitors. Given the high importance of identifying and effectively treating patients with CKD, it is necessary to focus on early detection of CKD, especially in high-risk groups. It is necessary to raise public awareness by creating and implementing programs for primary prevention of CKD, as well as awareness of patients, motivating them to follow the doctor's recommendations for a long time, including as part of the implementation of a non-drug strategy to combat CKD. It is important to use the full range of methods of drug therapy for CKD, including measures of universal nephroprotection. It should be remembered that the cost of late diagnosis of CKD is a reduction in life expectancy, primarily due to high rates of cardiovascular mortality, disability, and high-cost medication and kidney replacement therapy.

About the Author

M. M. Batiushin
Rostov State Medical University
Russian Federation

Mikhail M. Batiushin - MD, PhD, Professor, Chair of internal diseases №2, Rostov State Medical University; Head of the Nephrology Department, Clinic of Rostov State Medical University.
Nakhichevansky per. 29, Rostov-on-Don, 344022.



References

1. Li P.K., Garcia-Garcia G., Lui S.F., et al.; for the World Kidney Day Steering Committee. Kidney health for everyone everywhere - from prevention to detection and equitable access to care. Kidney International. 2020;97:226-32. DOI:10.1016/j.kint.2019.12.002.

2. Foreman K.J., Marquez N., Dolgert A., et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 201640 for 195 countries and territories. Lancet. 2018;392(10159):2052-90. DOI:10.1016/S0140-6736(18)31694-5.

3. Gandjour A., Armsen W., Wehmeyer W., et al. Costs of patients with chronic kidney disease in Germany. PLoSOne. 2020;15(4):e0231375. DOI:10.1371/journal.pone.0231375.

4. Hill N.R., Fatoba S.T., Oke J.L., et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One. 2016;11(7):e0158765. DOI:10.1371/journal.pone.0158765.

5. Bruck K., Stel VS., Gambaro G., et al., European CKD Burden Consortium. CKD Prevalence Varies across the European General Population. J Am Soc Nephrol. 2016;27(7):2135-47. DOI:10.1681/ASN.2015050542.

6. Muiru A.N., Charlebois E.D., Balzer L.B., et al. The epidemiology of chronic kidney disease (CKD) in rural East Africa: A population-based study. PLoS One. 2020;15(3):e0229649. DOI:10.1371/journal.pone.0229649.

7. Duan J.Y., Duan G.C., Wang C.J., et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in a central Chinese urban population: a cross-sectional survey. BMC Nephrol. 202;21(1):115. DOI:10.1186/s12882-020-01761-5.

8. Dudko M.Ju., Kotenko O.N., Shutov E.V., Vasina N.V. Epidemiology of chronic kidney disease among residents of Moscow. Clinical Nephrology. 2019;3:37-41 (In Russ.)

9. Bikbov M.M., Zainullin R.M., Kazakbaeva G.M., et al. Chronic kidney disease in Russia: the Ural eye and medical study. BMC Nephrol. 2020;21(1):198. DOI:10.1186/s12882-020-01843-4.

10. Murphy D., McCulloch C.E., Lin F., et al. Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. Trends in Prevalence of Chronic Kidney Disease in the United States. Ann Intern Med. 2016;165(7):473-481. DOI:10.7326/M16-0273.

11. USRDS, 2019.Annual Data Report. Electronic publication. [cited by Sep 25, 2020]. Available from: https://www.usrds.org/annual-data-report/current-adr/.

12. Vaidya S.R., Aeddula N.R. Chronic Renal Failure. [Updated 2020 Jul 16]. Treasure Island (FL): StatPearls Publishing; 2020 Jan [cited by Sep 25, 2020]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535404/.

13. Kotenko O.N. Chronic kidney disease: problems and solutions. Moscow Medicine. 2018;1(22):21-3 (In Russ.)

14. Reichel H., Zee J., Tu C., et al. Chronic kidney disease progression and mortality risk profiles in Germany: results from the Chronic Kidney Disease Outcomes and Practice Patterns Study. Nephrol Dial Transplant. 2020;35(5):803-10. DOI:10.1093/ndt/gfz260.

15. Webster A.C., Nagler E.V., Morton R.L., Masson P. Chronic Kidney Disease. Lancet. 2017;389(10075):1238-52. DOI:10.1016/S0140-6736(16)32064-5.

16. Xie Y., Bowe B., Mokdad A.H., et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney International. 2018;94(3):567-81. DOI:10.1016/j.kint.2018.04.011.

17. Clinical recommendations: chronic kidney disease. Association of nephrologists of Russia (2019) [cited by Sep 25, 2020]. Available from: http://nonr.ru/wp-content/uploads/2020/01/Clin_guidlines_CKD_24.11_final-3-3.pdf (In Russ.)

18. Shestakova M.V., Vikulova O.K., Zheleznjakova A.V., et al. Epidemiology of diabetes in the Russian Federation: what has changed over the past decade? Ter Arkhiv. 2019;10:4-13 (In Russ.) DOI:10.26442/00403660.2019.10.000364.

19. Centers for Disease Control and Prevention. Chronic Kidney Disease Surveillance System [cited by Sep 25, 2020]. Available from: https://nccd.cdc.gov/ckd/detail.aspx?QNum=Q89&Strat=CKD+Stage%2c+Diabetes.

20. Amod A., Buse J.B., McGuire D.K., et al. Glomerular Filtration Rate and Associated Risks of Cardiovascular Events, Mortality, and Severe Hypoglycemia in Patients with Type 2 Diabetes: Secondary Analysis (DEVOTE 11). Diabetes Ther. 2020;11(1):53-70. DOI:10.1007/s13300-019-00715-x.

21. Horowitz B., Miskulin D., Zager P. Epidemiology of hypertension in CKD. Adv Chronic Kidney Dis. 2015 Mar; 22(2):88-95. DOI:10.1053/j.ackd.2014.09.004.

22. Gu X., Fang X., Ji X., et al. Kidney dysfunction is associated with risk of cardiovascular events in middle-aged and elderly population with hypertension: A 5-year community-based cohort study in China. Clin Nephrol. 2020;93(3):130-9. DOI:10.5414/CN109712.

23. Cha R.H., Lee H., Lee J.P., et al. The influence of blood pressure patterns on renal outcomes in patients with chronic kidney disease: The long-term follow up result of the APrODiTe-2 study. Medicine (Baltimore). 2020;99(8):e19209. DOI:10.1097/MD.0000000000019209.

24. Yu Z., Rebholz C.M., Wong E., et al. Association Between Hypertension and Kidney Function Decline: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis. 2019;74(3):310-9. DOI:10.1053/j.ajkd.2019.02.015.

25. Mallamaci F., Pisano A., Tripepi G. Physical activity in chronic kidney disease and the EXerCise Introduction To Enhance trial. Nephrol Dial Transplant. 2020;35(Suppl 2):18-22. DOI:10.1093/ndt/gfaa012.

26. Saeed F., Arrigain S., Schold J.D., et al. What are the Risk Factors for One-Year Mortality in Older Patients with Chronic Kidney Disease? An Analysis of the Cleveland Clinic CKD Registry. Nephron. 2019;141(2):98-104. DOI:10.1159/000494298.

27. Hu L., Xiong Q., Chen Z., et al. Factors Associated with a Large Decline in Renal Function or Progression to Renal Insufficiency in Hospitalized Atrial Fibrillation Patients with Early-Stage CKD. Int Heart J. 2020;61(2):239-48. DOI:10.1536/ihj.19-205

28. House A.A. Management of Heart Failure in Advancing CKD: Core Curriculum 2018. Am J Kidney Dis. 2018;72(2):284-95. DOI:10.1053/j.ajkd.2017.12.006.

29. USRDS 2020 Annual Data Report. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases [cited by Sep 25, 2020]. Available from: https://adr.usrds.org/2020.

30. Russian pharmaceutical market. May 2019, DSMgroup. [cited by Sep 25, 2020]. Available from: https://gmpnews.ru/wp-content/uploads/2019/07/1_may_2019_pharmacy_analysis.pdf (In Russ.)

31. Sales G.T.M., Foresto R.D. Drug-induced nephrotoxicity. Rev Assoc Med Bras (1992). 2020;66Suppl 1(Suppl 1):82-90. DOI:10.1590/1806-9282.66.S1.82.

32. Wearne N., Davidson B., Blockman M., et al. HIV, drugs and the kidney. DrugsContext. 2020;9:2019-11-1. DOI:10.7573/dic.2019-11-1.

33. Pu L., Zou Y., Wu S.K., et al. Prevalence and associated factors of depressive symptoms among chronic kidney disease patients in China: Results from the Chinese Cohort Study of Chronic Kidney Disease (C-STRIDE). J Psychosom Res. 2020;128:109869. DOI:10.1016/j.jpsychores.2019.109869.

34. Gupta S., Patil N.M., Karishetti M., Tekkalaki B.V. Prevalence and clinical correlates of depression in chronic kidney disease patients in a tertiary care hospital. Indian J Psychiatry. 2018;60(4):485-8. DOI:10.4103/psychiatry.IndianJPsychiatry_272_18.

35. Kop W.J., Seliger S.L., Fink J.C., et al. Longitudinal association of depressive symptoms with rapid kidney function decline and adverse clinical renal disease outcomes. Clin J Am Soc Nephrol. 2011;6(4):834-44. DOI:10.2215/CJN.03840510.

36. Liu C.H., Yeh M.K., Weng S.C., et al. Suicide and chronic kidney disease: a case-control study. Nephrol Dial Transplant. 2017;32(9):1524-9. DOI:10.1093/ndt/gfw244.

37. Legrand K., Speyer E., Stengel B., et al. Perceived Health and Quality of Life in Patients With CKD, Including Those With Kidney Failure: Findings From National Surveys in France. Am J Kidney Dis. 2020;75(6):868-878. DOI:10.1053/j.ajkd.2019.08.026.

38. Lipnicki D.M., Crawford J., Kochan N.A., et al. Risk factors for mild cognitive impairment, dementia and mortality: the Sydney Memory and Ageing Study. J Am Med Dir Assoc. 2017;18:388-95. DOI:10.1016/j.jamda.2016.10.014.

39. Brodski J., Rossell S.L., Castle D.J., Tan E.J. A systematic review of cognitive impairments associated with kidney failure in adults before natural age-related changes. J Int Neuropsychol Soc. 2019;25(1):101-14. DOI:10.1017/S1355617718000917.

40. Viggiano D., Wagner C.A., Martino G., et al. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. 2020;10.1038/s41581(020):266-9. DOI:10.1038/s41581-020-0266-9.

41. Mazumder M.K., Paul R., Bhattacharya P., Borah A. Neurological sequel of chronic kidney disease: from diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Sci Rep.2019;9:3097. DOI:10.1038/s41598-018-37935-3.

42. Xia J., Wang L., Ma Z., et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol Dial Transplant. 2017;32(3):475-87. DOI:10.1093/ndt/gfw452.

43. White S.L., Polkinghorne K.R., Cass A., et al. Alcohol consumption and 5-year onset of chronic kidney disease: the AusDiab study. Nephrol Dial Transplant. 2009;24(8):2464-72. DOI:10.1093/ndt/gfp114.

44. Zelle D.M., Klaassen G., van Adrichem E., et al. Physical inactivity: a risk factor and target for intervention in renal care. Nat Rev Nephrol. 2017; 13(3):152-68. DOI:10.1038/nrneph.2016.187.

45. Ajjarapu A.S., Hinkle S.N., Li M., et al. Dietary Patterns and Renal Health Outcomes in the General Population: A Review Focusing on Prospective Studies. Nutrients. 2019;11(8):1877. DOI:10.3390/nu11081877.

46. Malta D., Petersen K.S., Johnson C., et al. High sodium intake increases blood pressure and risk of kidney disease. From the Science of Salt: A regularly updated systematic review of salt and health outcomes. J Clin Hypertens (Greenwich). 2018;20(12):1654-65. DOI:10.1111/jch.13408.

47. Haring B., Selvin E., Liang M., et al. Dietary Protein Sources and Risk for Incident Chronic Kidney Disease: Results From the Atherosclerosis Risk in Communities (ARIC) Study. J Ren Nutr. 2017;27(4):233-42. DOI:10.1053/j.jrn.2016.11.004.

48. Jhee J.H., Kee Y.K., Park J.T., et al. Diet Rich in Vegetables and Fruit and Incident CKD: A CommunityBased Prospective Cohort Study. Am J Kidney Dis. 2019;74(4):491-500. DOI:10.1053/j.ajkd.2019.02.023.

49. van Westing A.C., Kupers L.K., Geleijnse J.M. Diet and Kidney Function: a Literature Review. Curr Hy-pertens Rep. 2020;22(2):14. DOI:10.1007/s11906-020-1020-1

50. Asghari G., Yuzbashian E., Mirmiran P., Azizi F. The association between Dietary Approaches to Stop Hypertension and incidence of chronic kidney disease in adults: the Tehran Lipid and Glucose Study. Nephrol Dial Transplant. 2017;32(suppl_2):224-30. DOI:10.1093/ndt/gfw273.

51. Carrero J.J., Thomas F., Nagy K., et al. Global Prevalence of Protein-Energy Wasting in Kidney Disease: A Meta-analysis of Contemporary Observational Studies From the International Society of Renal Nutrition and Metabolism. J Ren Nutr. 2018;28(6):380-92. DOI:10.1053/j.jrn.2018.08.006.

52. Hanna R.M., Ghobry L., Wassef O., Ret al. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020;49(1-2):202-11. DOI:10.1159/000504240.

53. Mallamaci F., Tripepi G., D'Arrigo G., et al. Blood Pressure Variability, Mortality, and Cardiovascular Outcomes in CKD Patients. Clin J Am Soc Nephrol. 2019;14(2):233-40. DOI:10.2215/CJN.04030318.

54. Sanz A.B., Ramos A.M., Soler M.J., et al. Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert Rev. Proteomics. 2018;16:77-92. DOI:10.1080/14789450.2018.1545577.

55. Perez-Gomez M., Sanchez-Nino M.D., Sanz A.B., et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J. Clin. Med.2015;4:1325-47. DOI:10.3390/jcm4061325.

56. van Westing A.C., Kupers L.K., Geleijnse J.M. Diet and Kidney Function: a Literature Review. Curr Hy-pertens Rep. 2020;22(2):14. DOI:10.1007/s11906-020-1020-1.

57. Heerspink H.J.L., Parving H.H., Andress D.L., et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019;393(10184):1937-47. DOI:10.1016/S0140-6736(19)30772-X.

58. Wiviott S.D., Raz I., Bonaca M.P., et al. Dapaglifozin and cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2019;380(4):347-57. DOI.org/10.1056/NEJMoa1812389.

59. Wanner C., Inzucchi S.E., Lachin J.M., et al. Empaglifozin and progression of kidney disease in Type 2 diabetes. N Engl J Med. 2016;375(4):323-34. DOI.org/10.1056/NEJMoa1515920.

60. Neal B., Perkovic V., Mahafey K.W., et al. Canaglifozin and cardiovascular and renal events in Type 2 diabetes. N Engl J Med. 2017;377(7):644-57. DOI:10.1056/NEJMoa1611925.

61. Heerspink H.J.L., Stefansson B.V., Chertow G.M., et al. Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant. 2020;35(2):274-82. DOI:10.1093/ndt/gfz290.

62. Nespoux J., Vallon V. Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens. 2020;29(2):190-8. DOI:10.1097/MNH.0000000000000584.

63. Mulder S., Heerspink H.J.L., Darshi M., et al. Effects of dapagliflozin on urinary metabolites in people with type 2 diabetes. Diabetes Obes Metab. 2019;21:2422-28. DOI:10.1111/dom.13823.

64. Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394:131-8. DOI:10.1016/S0140-6736(19)31150-X.

65. Mann J.FE., 0rsted D.D., Brown-Frandsen K., et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839-48. DOI:10.1056/NEJMoa1616011.

66. Rosenstock J., Perkovic V., Johansen O.E., et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA. 2019;321(1):69-79. DOI:10.1001/jama.2018.18269.

67. Bakris G.L., Agarwal R., Anker S.D., et al. Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial. Am J Nephrol. 2019;50(5):333-44. DOI:10.1159/000503713.

68. Bakris G.L., Agarwal R., Chan J.C., et al. Effect of Finerenone on Albuminuria in Patients With Diabetic Nephropathy: A Randomized Clinical Trial. JAMA. 2015;314(9):884-94. DOI:10.1001/jama.2015.10081.

69. Liu Y.H., Li K., Tian H.Q. Renoprotective Effects of a New Free Radical Scavenger, XH-003, against Cisplatin-Induced Nephrotoxicity. Oxid Med Cell Longev. 2020;2020:9820168. DOI:10.1155/2020/9820168.

70. Reutens A.T., Jandeleit-Dahm K., Thomas M., et al. A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: Protocol and statistical considerations. Contemp Clin Trials. 2020;90:105892. DOI:10.1016/j.cct.2019.105892.

71. Li J., Liu H., Takagi S., et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight. 2020;5(6):e129034. DOI:10.1172/jci.insight.129034.

72. Cao D.M., Guan Q.X., Liu Y.L., Wang S.M. Effect of ginsenosides on serous metabonomic profiles in cerebral ischemia-reperfusion rats based on ~1H-NMR. Zhongguo Zhong Yao Za Zhi. 2020;45(5):1142-1148. DOI:10.19540/j.cnki.cjcmm.20190619.505.


For citation:


Batiushin M.M. Chronic Kidney Disease: Current State of the Problem. Rational Pharmacotherapy in Cardiology. 2020;16(6):938-947. (In Russ.) https://doi.org/10.20996/1819-6446-2020-11-06

Views: 387


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)