Rational Pharmacotherapy in Cardiology

Advanced search


Full Text:


Antisense oligonucleotides (ASO) technology in elaboration of drugs for lipid metabolism correction is discussed. The main ASO types and modes of its action on the target mRNA are analyzed. Advantages and disadvantages of different ASO are considered in the context of requirements for their therapeutic applications.
Methods of ASO chemical modification; advantages and disadvantages of different ways of ASO delivery into the cells; developments state of ASO-drugs for therapy of lipid metabolism disturbances; data from clinical trials of these drugs are described.

About the Authors

O. I. Afanasieva
Russian Cardiology Research and Production Complex, Moscow
Russian Federation

S. N. Pokrovsky
Russian Cardiology Research and Production Complex, Moscow
Russian Federation


1. Bennet CF, Swayze EE. RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform. Annu Rev Pharmacol Toxicol 2010; 50: 259-93.

2. Haussechecker D. The Business of RNAi Therapeutic in 2012. Molecular Therapy. Nucleic Acids 2012; 2: e8.

3. Crooke RM, Graham MJ. Therapeutic potential of antisense oligonucleotides for the management of dyslipidemia. Clin Lipidol 2011; 6(6): 675-92.

4. Raal FJ, Santos RD. Homozygous familial hypercholesterolemia: current perspectives on diagnosis and treatment. Atherosclerosis 2012; 223(2): 262-8.

5. Fruchart JC, Sacks FM, Hermans MP, et al. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patient. Diabetes Vasc Dis Res 2008; 5: 319-35.

6. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 2010; 31: 2844-53.

7. Yezhov MV, Trukhacheva EP, Afanasieva OI, et al. Relationship of lipoprotein ( a) and homocysteine with coronary atherosclerosis in young and middle ages. Cardiovascular Therapy and Prevention in 2008; (5): 10-15. Russian (Ежов М.В., Трухачева Е.П., Афанасьева О.И., и др. Связь липопротеида(а) и гомоцистеина с коронарным атеросклерозом у мужчин молодого и среднего возрастов. Кардиоваскулярная Терапия и Профилактика 2008; (5): 10-15).

8. Afanasyeva OI, Yezhov CF, Afanasyeva MI, et al. Relationship low molecular phenotype of apoprotein ( a) and concentrations of lipoprotein (a ) with multifocal atherosclerosis in patients with coronary heart disease. Rational Pharmacother Card 2010; 6 (4) : 474-80. Russian (Афанасьева ОИ, Ежов МВ, Афанасьева МИ, и др. Связь низкомолекулярного фенотипа апобелка(а) и концентрации липопротеида(а) с мультифокальным атеросклерозом у больных ишемической болезнью сердца. Рациональная Фармакотерапия в Кардиологии 2010; 6 (4): 474-80).

9. Safarova MS, Yezhov MV, Trukhacheva EP et al. Pleiotropic effects of nicotinic acid in men with coronary heart disease and high lipoprotein (a). Cardiology 2011; (5): 9-16. Russian (Сафарова МС, Ежов М.В., Трухачева Е.П. и др. Плейотропные эффекты никотиновой кислоты у мужчин с ишемической болезнью сердца и высоким уровнем липопротеида(а). Кардиология 2011; (5): 9-16).

10. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010; 466(7307): 707-13.

11. Bauer RC, Stylianou IM, Rader DJ. Functional validation of new pathways in lipoprotein metabolism identified by human genetics. Curr Opin Lipidol 2011; 22(2): 123-8.

12. Chapman MJ, Ginsberg HN, Amarenco P et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011; 32 (11): 1345-61.

13. Danesh J, Erqou S, Walker M et al. The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol 2007; 22 (12): 839-69.

14. Ooi EMM, Barrett HR, Chan DC, et al. Apolipoprotein CIII: understanding an emerging risk factor. Clin Sci 2008; 114: 611-624.

15. Chapman MJ, Le Goff W, Guerin M, et al. Cholesteryl ester transfer protein: at the heart of the action of lipidmodulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur Heart J 2010; 31(2): 149-64.

16. Brautbar A, Ballantyne CM. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol 2011; 8(5): 253-9.

17. Wu H, Lima WF, Zhang H, et al. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 2004; 279: 17181-9.

18. Makarov YuA, Kramerov DA. The non-coding RNA. Browse. Biochemistry 2007, 72 (11): 1427-48. Russian (Макарова ЮА, Крамеров ДА. Некодирующие РНК. Обзор. Биохимия 2007; 72(11): 1427-48).

19. Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305: 1437-41.

20. Shrivastava N, Srivastava A. RNA interference: an emerging generation of biologicals. Biotechnol J 2008; 3(3): 339-3.

21. Hartmann D, Thum T. Micro RNAs and vascular (dis)function. Vascular Pharmacology 2011; 102: 5592-605.

22. Bratkovič T, Glavan G, Strukelj B, Zivin M, Rogelj B. Exploiting microRNAs for cell engineering and therapy. Biotechnol Adv 2012; 30(3): 753-65.

23. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136: 215-336.

24. Bill BR, Petzold AM, Clark KJ, et al. A primer for morpholino use inzebrafish. Zebrafish 2009; 6: 69-77.

25. Hochreiter AE, Xiao H, Goldblatt EM, et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 2006; 12: 3184-92.

26. Skoblov MYu. Prospects for antisense therapy technologies. Molecular Biology 2009; 43 (6): 984-998. Russian (Скоблов МЮ. Перспективы технологий антисмысловой терапии. Молекулярная Биология 2009; 43(6): 984-998).

27. Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 2012; 64(13): 1508-21.

28. Mysara M, Garibaldi J, Elhefnawi M. Mys iRNA – designer: a workflow for efficient siRNA design. PLoS One 2011;6: e25642.

29. Mook OR, Baas F, de Wissel MB, Fluiter K. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 2007; 6(3): 833-43.

30. Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59(2-3): 75-86.

31. Gao YS, Mei J, Tong TL, et al. Inhibitory effects of VEGF-siRNA mediated by adenovirus on osteosarcoma-bearing nude mice. Cancer Biother Radiopharm 2009;24(2):243-7.

32. Raghunathan S, Patel BM. Therapeutic implications of interfering RNA in cardiovascular diseases. Fundamental and Clinical Pharmacology 2013; 27(1): 1-20.

33. Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 2011; 6:1017-25.

34. Gavrilov K, Saltzman MW. Therapeutic siRNA: Principles, Challenges, and Strategies. Yale Journal of Boil And Med 2012;85:187-200.

35. Rayner KJ, Fernandez-Hernando C, Moore KJ. MicroRNAs regulating lipid metabolism in atherogenesis. Thromb Haemost 2012;107(4):642-7.

36. Rayner K, Suarez Y, Davalos A et al. miR33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328: 1570-3.

37. Miyares MA. Anacetrapib and dalcetrapib: two novel cholesteryl ester transfer protein inhibitors. Ann Pharmacother 2011;45: 84-94.

38. Olivieri O, Martinelli N, Girelli G et al. Apolipoprotein CIII predicts cardiovascular mortality in severe coronary artery disease and is associated with an enhanced thrombin generation. J Thromb Haemost 2010;8: 463-71.

39. Holmberg R, Refai E, Hoog A et al. Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc Natl Acad Sci USA 2011; 108(26): 10685-9.

40. Liu Y, Millar JS, Cromley DA, et al. Knockdown of Acyl-CoA: diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim Biophys Acta 2008; 1781: 97-104.

41. Visser ME. Antisense oligonucleotide for the treatment of dyslipidaemia. Eur Heart J 2012;33:1451-8.

42. Zimmermann TS, Lee ACH, Akinc A, et al. RNAi-mediated gene silencing in nonhuman primates. Nature 2006; 441: 111-4.

43. Kassim SH, Wilson JM, Rader DJ. Gene therapy for dyslipidemia: a review of gene replacement and gene inhibition strategies. Clin Lipidol 2010; 5(6): 793-809.

44. Nishina K, Unno T, Uno Y et al. Efficient in vivo delivery of siRNA to the liver by conjugation of alphatocopherol. Mol Ther 2008; 16:734-40.

45. Straarup EM, Fisker N, Hedtja M, et al Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Research 2010; 38(20):7100-11.

46. Khoo B, Roca X, Chew SL, et al. Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol 2007; 8: 3-16.

47. Zhang DW, Lagace TA, Garuti R et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factorlike repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007;282: 18602-12.

48. Graham MJ, Lemonidis KM, Whipple CP et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res 2007;48: 763-7.

49. Gupta N, Fisker N, Asselin MC et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 2010; 5(5): E10682.

50. Lindholm MW, Elmén J, Fisker N, et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther 2012;20(2): 376-81.

51. Merki E, Graham MJ, Mullick AE, et al. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation 2008; 118:743-53.

52. Merki E, Graham MJ. Antisens oligonucleotide lowers plasma levels of apolipoprotein(a) and lipopro- tein(a) in transgenic mice. J Am Coll Cardiol 2011;57(15):1611-21.

53. Raal FJ, Santos RD Blom DJ et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, doubleblind, placebocontrolled trial. Lancet 2010; 375: 998-1006.

54. Visser ME, Kastelein JJ, Stroes ES. Apolipoprotein B synthesis inhibition: results from clinical trials. Curr Opin Lipidol 2010;21(4): 319-23.

55. Kwoh TJ. An overview of the clinical safety experience of first and secondgeneration antisense oligonucleotides. In: Crooke ST, editor. Antisense Drug Technology: Principles, Strategies and Application (2nd Edition). Boca Raton, FL: CRC press;2008: 365-99.

56. Vickers TA, Lima WF, Nichols JG, et al. Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells. Nucleic Acids Res 2007;35: 6598-610.

57. John M, Constien R, Akinc A, et al. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 2007; 449:745-47.

58. Birmingham A, Anderson EM, Reynolds A et al. 3'UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006; 3(3): 199-204.

59. Reynolds A, Anderson EM, Vermeulen A, et al. Induction of the interferon response by siRNA is cell typeand duplex length- dependent. RNA 2006; 12(6):988-93.

60. Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11(3):263-70.

For citation:

Afanasieva O.I., Pokrovsky S.N. LIPID METABOLISM CORRECTION BY ANTISENSE TECHNOLOGY. Rational Pharmacotherapy in Cardiology. 2013;9(5):532-541. (In Russ.)

Views: 502

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)