Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Telocytes and Atrial Fibrillation: From Basic Research to Clinical Practice

https://doi.org/10.20996/1819-6446-2020-08-18

Full Text:

Abstract

The emergence of new research methods makes it possible to study the tissue, structural, cellular, and molecular causes of atrial fibrillation (AF). Recently, the role of interstitial telocyte cells in the pathogenesis of AF has been actively discussed. Telocytes are a special type of interstitial cells identified in many organs and tissues, including the heart. The roles of telocytes in the myocardium are diverse: they have pacemaker activity, and carry out structural and coordination communication between cells. The ability of these cells to change the speed of the electrical pulse in the atrial and ventricular myocardium has been proven. Telocytes form "atypical" connections with almost all types of cells in the human heart, which collects them in an integrated network. Using electron microscopy, it was found that interstitial cells have different types of connections in the network and can integrate "information" from the vascular and nervous systems, interstitial, immune system, stem cells, progenitor cells, and contractile cardiomyocytes. Currently, the results of studies have been obtained that prove both positive and negative effects of telocytes on the occurrence of various diseases of the cardiovascular system. The role of telocytes in AF arrhythmogenesis remains a subject of discussion. The unique properties of telocytes in providing intercellular contacts, transmitting genetic information, and their ability to regenerate heart tissue are undoubtedly the most promising areas of modern cardiology. There is evidence of both direct and indirect effects of telocytes on the electrophysiological properties of the myocardium. There is no doubt that the development of this area opens up new therapeutic targets for the prevention and treatment of AF.

About the Authors

V. I. Podzolkov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Valery I. Podzolkov – MD, PhD, Professor, Head of Chair of Faculty Therapy №2, Director of Therapeutic Clinic, University Clinical Hospital №4

Trubetskaya ul. 8-2, Moscow, 119991



A. I. Tarzimanova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Aida I. Tarzimanova – MD, PhD, Professor, Chair of Faculty Therapy №2

Trubetskaya ul. 8-2, Moscow, 119991



A. S. Frolova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Alexandra S. Frolova – Student

Trubetskaya ul. 8-2, Moscow, 119991



References

1. Kirchhof P., Benussi S., Kotecha D., еt all 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-962. DOI:10.1093/eurheartj/ehw210.

2. January C.T., Wann L.S., Calkins H., et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Heart Rhythm. 2019;16(8):e66-e93. DOI:10.1016/j.hrthm.2019.01.024.

3. Friberg L., Rosenqvist M., Lip G.Y., et al. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur Heart J. 2012;33:1500-10. DOI:10.1093/eurheartj/ehr488.

4. Hobbs F.R., Taylor C.J., Jan Geersing G., et al. European Primary Care Cardiovascular Society (EPCCS) consensus guidance on stroke prevention in atrial fibrillation (SPAF) in primary care. Eur J Prev Cardiol. 2016; 23:460-73. DOI:10.1177/2047487315571890.

5. Hinescu M.E., Gherghiceanu M., Mandache E., et al. Interstitial Cajal-like cells (ICLC) in human atrial myocardium J Cell Mol Med. 2005;9(4):972-5. DOI:10.1111/j.1582-4934.2006.tb00306.x.

6. Cretoiu D., Hummel E., Zimmermann H., et al. Human cardiac telocytes: 3D imaging by FIB- SEM tomography. J Cell Mol Med. 2014;18(11):2157-64. DOI:10.1111/jcmm.12468.

7. Gherghiceanu M., Popescu L.M. Human epicardium: ultrastructural ancestry of mesothelium and mesenchymal cells. J Cell Mol Med. 2009;13:2949-51. DOI:10.1111/j.1582-4934.2009.00869.x.

8. Cantarero I., Luesma M.J., Junquera C. The primary cilium of telocytes in the vasculature: electron microscope imaging. J Cell Mol Med. 2011;15:2594-600. DOI:10.1111/j.1582-4934.2011.01312.x.

9. Ceafalan L., Gherghiceanu M., Popescu L.M., et al. Telocytes in human skin; are they involved in skin regeneration. J Cell Mol Med. 2012;16(7):1405-20. DOI:10.1111/j.1582-4934.2012.01580.x.

10. Gherghiceanu M., Popescu L.M. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005-11. DOI:10.1111/j.1582-4934.2011.01299.x.

11. Zhou J., Wang Y., Zhu P., et al. Distribution and characteristics of telocytes as nurse cells in the architectural organization of engineered heart tissues. Sci China Life Sci. 2014;57(2):241-7. DOI:10.1007/s11427-013-4602-1.

12. Bei Y., Wang F., Yang C., Xiao J. Telocytes in regenerative medicine. J Cell Mol Med. 2015;19(7):1441-54. DOI:10.1111/jcmm.12594.

13. Gherghiceanu M., Popescu L. M. Cardiac telocytes - their junctions and functional implications// Cell Tissue Res. - 2012. - Vol. 348. - P. 265-279. DOI: 10.1007/s00441-012-1333-8

14. Wang F., Song Y., Bei Y., et al. Telocytes in liver regeneration: possible roles. J Cell Mol Med. 2014;18(9):1720-6. DOI:10.1111/jcmm.12355.

15. Popescu L.M., Manole C.G., Gherghiceanu M., et al. Telocytes in human epicardium. J Cell Mol Med. 2010;14(8):2085-93. DOI:10.1111/j.1582-4934.2010.01129.x.

16. Fertig E.T., Gherghiceanu M., Popescu L.M. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med. 2014;18:1938-43. DOI:10.1111/jcmm.12436.

17. Liskova Yu. V., Stadnikov A. A., salikova S. P. the Role of telocytes in the heart in normal and pathological conditions. Archive of Pathology. 2017;2:59-63 (In Russ.) DOI:10.17116/patol201779258-63.

18. Zheng Y.H., Bai C.X., Wang X.D. Telocyte morphologies and potential roles in diseases. J Cell Physiol. 2012;227(6):2311-17. DOI:10.1002/jcp.23022.

19. Kostin S., Popescu L.M. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009;13(2):295-308. DOI:10.1111/j.1582-4934.2008.00668.x.

20. Kostin S. Cardiac telocytes in normal and diseased hearts. Semin Cell Dev Biol. 2016;55:2230. DOI:10.1016/j.semcdb.2016.02.023.

21. Popescu L.M., Faussone-Pellegrini M.S. Telocytes – A case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to telocytes. J Cell Mol Med. 2010;14(4):729-40. DOI:10.1111/j.1582-4934.2010.01059.x.

22. Cretoiu S.M., Popescu L.M. Telocytes revisited. Biomol Concepts. 2014;5(5):353-69. DOI:10.1515/bmc-2014-0029.

23. Bani D., Formigli L., Gherghiceanu M., et al. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14:2531-38. DOI:10.1111/j.1582-4934.2010.01119.x.

24. Popescu L.M., Gherghiceanu M., Manole C.G. et al. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches// J Cell Mol Med. 2009;13:866-886. DOI: 10.1111/j.1582-4934.2009.00758.x.

25. Gherghiceanu M., Popescu L.M. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010;14:871-7. DOI:10.1111/j.1582-4934.2010.01060.x.

26. Manole C.G., Cismasiu V., Gherghiceanu M., et al. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15:2284-9. DOI:10.1111/j.1582-4934.2011.01449.x.

27. Zhao B., Chen S., Liu J., et al. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17(1):123-33. DOI:10.1111/j.1582-4934.2012.01655.x

28. Mandache E., Gherghiceanu M., Macarie C., et al. Telocytes in human isolated atrial amyloidosis: ultrastructural remodelling. J Cel Moll Med. 2010;14:2739-47. DOI:10.1111/j.1582-4934.2010.01200.x.

29. Vandecasteele T., Cornillie P., Vandevelde K., et al. Presence of Ganglia and Telocytes in Proximity to Myocardial Sleeve Tissue in the Porcine Pulmonary Veins Wall. Anat Histol Embryol. 2017;46(4):325- 333. DOI:10.1111/ahe.12273.

30. Sheng J., ShimW., Lu J., et al. Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med. 2014;18(2):355-62. DOI:10.1111/jcmm.12240.

31. Mitrofanova L.B., Khazratov A.O., Gurschenkov A.V., et al. Morphological study of telocytes in the left atrium in patients with long-term persistent atrial fibrillation. Russian Journal of Cardiology. 2019;24(7):53-62 (In Russ.) DOI:10.15829/1560-4071-2019-7-53-62.

32. Pellman J., Lyon R.C., Sheikh F. Extracellular matrix remodeling in atrial fibrosis: mechanisms and implications in atrial fibrillation. J Mol Cell Cardiol. 2010;48(3):461-7. DOI:10.1016/j.yjmcc.2009.09.001.

33. De Jong S., van Veen T.A., van Rijen H.V., de Bakker J.M. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011;57(6):630-8. DOI:10.1097/FJC.0b013e318207a35f.

34. Tanaka K., Zlochivier S., Vikstrom K., et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res. 2007;101:839-47. DOI:10.1161/CIRCRESAHA.107.153858.

35. Drapkina O.M., Emelyanov A.V. Atrial fibrosis is a morphological basis of atrial fibrillation. Rational Pharmacotherapy in Cardiology. 2013;9(4):417-9 (In Russ.) DOI:10.20996/1819-6446-2013-9-4-417-419.

36. Rohr S. Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm. 2009;6:848-56. DOI:10.1016/j.hrthm.2009.02.038.

37. Friedrichs K., Baldus S., Klinke A. Fibrosis in atrial fibrillation — role of reactive species and MPO. Front Physio. 2012;3:214. DOI:10.3389/fphys.2012.00214.

38. Baum J., Duffy H.S. Fibroblasts and myofibroblasts: What are we talking about. J Cardiovasc Pharmacol. 2011;57(4):376-9. DOI:10.1097/FJC.0b013e3182116e39.

39. Burstein B., Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51(8):802-9. DOI:10.1016/j.jacc.2007.09.064.

40. Lionetti V., Bianchi G., Recchia F.A., et al. Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure. Heart Fail Rev. 2010;15(6):531-42. DOI:10.1007/s10741-010-9165-7.

41. Richter М., Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med. 2015;19(11):2597- 606. DOI:10.1111/jcmm.12664.


For citation:


Podzolkov V.I., Tarzimanova A.I., Frolova A.S. Telocytes and Atrial Fibrillation: From Basic Research to Clinical Practice. Rational Pharmacotherapy in Cardiology. 2020;16(4):590-594. (In Russ.) https://doi.org/10.20996/1819-6446-2020-08-18

Views: 73


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)