Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Epicardial Adipose Tissue as a New Target of Therapeutic Interventions

https://doi.org/10.20996/1819-6446-2020-08-15

Full Text:

Abstract

There is evidence of a correlation between epicardial adipose tissue and the presence and severity of coronary heart disease, the development of hypertrophy, impaired diastolic and systolic function of the left ventricle, enlargement, fibrosis and electrophysiological remodeling of the atria, the occurrence and severity of supraventricular arrhythmias. There is also a lot of evidence of the influence of both non-drug methods and drugs on the severity and functional activity of epicardial adipose tissue, which can be considered as a potentially modifiable factor of cardiovascular risk, the various therapeutic interventions target and a criterion for their effectiveness. Its unique characteristics suggest the advisability of pharmacological strategies aimed at regulating the expression of genes encoding the secretion of adipocytokines and adipocyte function, and a dynamic assessment of the severity of epicardial fat during therapy can be a tool to evaluate its effectiveness in various cardiovascular diseases.

About the Authors

M. A. Druzhilov
Petrozavodsk State University
Russian Federation

Mark A. Druzhilov – MD, PhD, Associate Professor, Graduate Training Center, Institute of Medicine

Lenina ul. 33, Petrozavodsk, 185035



T. Y. Kuznetsova
Petrozavodsk State University
Russian Federation

Tatyana Y. Kuznetsova – MD, PhD, Professor, Head of Chair of Faculty Therapy, Phthisiology, Infectious Diseases and Epidemiology, Institute of Medicine

Lenina ul. 33, Petrozavodsk, 185035



References

1. Chumakova G.A., Kuznetsova T.Y., Druzhilov M.A., Veselovskaya N.G. Visceral adiposity as a global factor of cardiovascular risk. Russ J Cardiol. 2018;5:7-14 (In Russ.) DOI:10.15829/1560-4071-2018-5-7-14.

2. Kuznetsova T.Y., Chumakova G.A., Druzhilov M.A., Veselovskaya N.G. Clinical application of quantitative echocardiographic assessment of epicardial fat tissue in obesity. Russ J Cardiol. 2017;4:81-7 (In Russ.) DOI:10.15829/1560-4071-2017-4-81-87.

3. Iacobellis G., Bianco А. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends in Endocrinology and Metabolism. 2011;22(11):450-7. DOI:10.1016/j.tem.2011.07.003.

4. Salazar J., Luzardo E., Mejías J. et al. Epicardial Fat: Physiological, Pathological, and Therapeutic Implications. Cardiol Res Pract. 2016;1291537. DOI:10.1155/2016/1291537.

5. Packer M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J Am Coll Cardiol. 2018;71(20):2360-72. DOI:10.1016/j.jacc.2018.03.509.

6. Druzhilov M.A., Kuznetsova T.Y. Obesity associated atrial fibrillation: epicardial fat tissue in etiopathogenesis. Russ J Cardiol. 2017;7:178-84. (In Russ.) DOI:10.15829/1560-4071-2017-7-178-184.

7. Antonopoulos А., Antoniades С. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595(12):3907-17. DOI:10.1113/JP273049.

8. Antonopoulos A., Margaritis M., Verheule S., et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Circ Res. 2016;118(5):842-55. DOI:10.1161/CIRCRESAHA.115.307856.

9. González N., Moreno-Villegas Z., González-Bris A., et al. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol. 2017;16(1):44. DOI:10.1186/s12933-017-0528-4.

10. Iacobellis G., Singh N., Wharton S., Sharma A. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity. 2008;16(7):1693-7. DOI:10.1038/oby.2008.251.

11. Kim M., Tomita T., Kim M., et al. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol. 2009;106(1):5-11. DOI:10.1152/japplphysiol.90756.2008.

12. Gaborit B., Jacquier A., Kober F., et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012;60:1381-9. DOI:10.1016/j.jacc.2012.06.016.

13. Altin C., Erol V., Aydin E., et al. Impact of weight loss on epicardial fat and carotid intima media thickness after laparoscopic sleeve gastrectomy: A prospective study. Nutr Metab Cardiovasc Dis. 2018;28(5):501-9. DOI:10.1016/j.numecd.2018.02.001.

14. Xourgia E., Papazafiropoulou A., Melidonis A. Effects of antidiabetic drugs on epicardial fat. World J Diabetes. 2018;9(9):141-8. DOI:10.4239/wjd.v9.i9.141.

15. Lima-Martínez M., Paoli M., Rodney M., et al. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine. 2016;51:448-55. DOI:10.1007/s12020-015-0710-y.

16. Iacobellis G., Mohseni M., Bianco S., Banga P. Liraglutide causes large and rapid epicardial fat reduction. Obesity (Silver Spring). 2017;25(2):311-6. DOI:10.1002/oby.21718.

17. Sacks H., Fain J., Cheema P., et al. Inflammatory Genes in Epicardial Fat Contiguous With Coronary Atherosclerosis in the Metabolic Syndrome and Type 2 Diabetes. Diabetes Care. 2011;34:730-3. DOI:10.2337/dc10-2083.

18. Dutour A., Abdesselam I., Ancel P., et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab. 2016;18(9):882-91. DOI:10.1111/dom.12680.

19. Zinman B., Wanner C., Lachin J., et. al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes for the EMPA-REG OUTCOME Investigators. N Engl J Med. 2015;373(22):2117- 28. DOI:10.1056/NEJMoa1504720.

20. Neal B., Perkovic V., Mahaffey K., et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-57. DOI:10.1056/NEJMoa1611925.

21. Wiviott S., Raz I., Bonaca M., et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-57. DOI:10.1056/NEJMoa1812389.

22. Bouchi R., Terashima M., Sasahara Y., et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovasc Diabetol. 2017;16:32. DOI:10.1186/s12933-017-0516-8.

23. Fukuda T., Bouchi R., Terashima M., et al. Ipragliflozin Reduces Epicardial Fat Accumulation in NonObese Type 2 Diabetic Patients with Visceral Obesity: A Pilot Study. Diabetes Ther. 2017;8:851-61. DOI:10.1007/s13300-017-0279-y.

24. Sato T., Aizawa Y., Yuasa S., et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6. DOI:10.1186/s12933-017-0658-8.

25. Yagi S., Hirata Y., Ise T., et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2017;9:78. DOI:10.1186/s13098-017-0275-4.

26. Díaz-Rodríguez E., Agra R., Fernández Á., et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res. 2018;114:336-46. DOI:10.1093/cvr/cvx186.

27. Park J., Park Y., Kim Y. et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound. 2010;18(4):121-6. DOI:10.4250/jcu.2010.18.4.121.

28. Soucek F., Covassin N., Singh P., et al. Effects of atorvastatin (80 mg) therapy on quantity of epicardial adipose tissue in patients undergoing pulmonary vein isolation for atrial fibrillation. Am J Cardiol. 2015;116(9):1443-6. DOI:10.1016/j.amjcard.2015.07.067.

29. Alexopoulos N., Melek B., Arepalli C., et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (beyond endorsed lipid lowering with EBT scanning). J Am Coll Cardiol. 2013;61(19):1956- 61. DOI:10.1016/j.jacc.2012.12.051.

30. Parisi V., Petraglia L., D'Esposito V., et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. International Journal of Cardiology. 2019;274:326-30. DOI:10.1016/j.ijcard.2018.06.106.

31. Bełtowski J. Epicardial adipose tissue: The new target for statin therapy. International Journal of Cardiology. 2019;274:353-4. DOI:10.1016/j.ijcard.2018.06.106.

32. Alexopoulos N., Raggi P. Epicardial Adipose Tissue: Another Tassel in the Complex Fabric of Atherosclerosis. Cardiovasc Hematol Disord Drug Targets. 2018;18(1):17-26. DOI:10.2174/1871529X17666170125103555.

33. Marso S., Daniels G., Brown-Frandsen K. et al. LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311- 22. DOI:10.1056/NEJMoa1603827.

34. Catapano A., Graham I., De Backer G., et al. 2016 ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37(39):2999-3058. DOI:10.1093/eurheartj/ehw272.

35. Iacobellis G., Camarena V., Sant D., Wang G. Human Epicardial Fat Expresses Glucagon-Like Peptide 1 and 2 Receptors Genes. Horm Metab Res. 2017;49(8):625-30. DOI:10.1055/s-0043-109563.

36. Packer M. Critical role of the epicardium in mediating cardiac inflammation and fibrosis in patients with type 2 diabetes. Diabetes Obes Metab. 2019;21(8):1765-8. DOI:10.1111/dom.13792.

37. Solomon S., McMurray J., Anand I. et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N Engl J Med. 2019;381(17):1609-20. DOI:10.1056/NEJMoa1908655.

38. Aldiss P., Davies G., Woods R. et al. “Browning” the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int J Cardiol. 2017;228:265-74. DOI:10.1016/j.ijcard.2016.11.074.

39. Iacobellis G., Barbaro G. Epicardial adipose tissue feeding and overfeeding the heart. Nutrition. 2019;59:1-6. DOI:10.1016/j.nut.2018.07.002.

40. Kuznetsova T.Y., Druzhilov M.A., Chumakova G.A., Veselovskaya N.G. Strategies and methods for the correction of obesity and associated cardiovascular risk. Russ J Cardiol. 2019;4:61-7 (In Russ.) DOI:10.15829/1560-4071-2019-4-61-67.


For citation:


Druzhilov M.A., Kuznetsova T.Y. Epicardial Adipose Tissue as a New Target of Therapeutic Interventions. Rational Pharmacotherapy in Cardiology. 2020;16(4):585-589. (In Russ.) https://doi.org/10.20996/1819-6446-2020-08-15

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)