Rational Pharmacotherapy in Cardiology

Advanced search

Angiogenesis in Patients with Chronic Heart Failure: Focus on Endothelial Vascular Growth Factor, Pentraxin-3 and Transforming Growth Factor Beta

Full Text:


Chronic heart failure (CHF) is considered the leading cause of death in patients with established cardiovascular (CVD) and metabolic diseases. Although the current treatment strategy has improved survival and clinical outcomes, the prevalence of CHF shows an increase. Current clinical guidelines for the treatment and prevention of CVD note the role of biological markers as a fairly simple and powerful tool for diagnosing, stratifying risk and predicting CHF. However, it is unclear whether all of these biological markers are equally capable of predicting cardiovascular mortality and heart failure related outcomes in patients with acute and chronic heart failure, as well as in different phenotypes of heart failure. However, the results of numerous studies demonstrate scientific interest in the processes of angiogenesis among patients with CHF. There is an impressive body of evidence linking CHF to the level of markers such as vascular endothelial growth factor, pentraxin-3, and transforming growth factor beta. The review presents the data of domestic and foreign clinical studies devoted to the study of the level of angiogenesis markers among patients with CHF.

About the Authors

R. N. Shepel
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Ruslan N. Shepel – MD, Researcher, Department of Fundamental and Applied Aspects of Obesity; Head of Department of Management and Analysis of Medical Care; Assistant Director for Regional Development

Petroverigsky per. 10, Moscow, 101990

O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Oxana M. Drapkina – MD, PhD, Professor, Corresponding Member of the Russian Academy of Sciences, Director

Petroverigsky per. 10, Moscow, 101990


1. Ponikowski P., Anker S.D., AlHabib K.F., et al. Heart failure: preventing disease and death worldwide. ESC Heart Failure. 2014;1:4-25. DOI:10.1002/ehf2.12005.

2. Savarese G., Lund L.H. Global Public Health Burden of Heart Failure. Card Fail Rev. 2017;3(1):7-11. DOI:10.15420/cfr.2016:25:2.

3. Tereshchenko S.N., ZHirov I.V. Chronic heart failure: New challenges and new perspectives. Ter Arkhiv. 2017;89(9):4-9 (In Russ.).

4. Mozaffarian D., Benjamin E.J., Go A.S., et al. American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics., 2016 Update: A report from the American Heart Association. Circulation. 2016;133:e38-e360. DOI:10.1161/CIR.0000000000000350.

5. Ohlmeier C., Mikolajczyk R., Frick J., et al. Incidence, prevalence and 1-year all-cause mortality of heart failure in Germany: a study based on electronic healthcare data of more than six million persons. Clin Res Cardiol. 2015;104:688-96. DOI:10.1007/s00392-015-0841-4

6. Zarrinkoub R., Wettermark B., Wandell P., et al. The epidemiology of heart failure based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail. 2013;15:995-1002. DOI:10.1093/eurjhf/hft064.

7. Buja A., Solinas G., Visca M., et al. Prevalence of heart failure and adherence to process indicators: which sociodemographic determinants are involved? Int J Environ Res Public Health. 2016;13:238. DOI:10.3390/ijerph13020238.

8. Sakata Y., Shimokawa H. Epidemiology of heart failure in Asia. Circ J. 2013;77:2209-17. DOI:10.1253/circj.cj-13-0971.

9. Hu S.S., Kong L.Z., Gao R.L., et al. Outline of the report on cardiovascular disease in China, 2010. Biomed Environ Sci. 2012;25:251-6. DOI:10.3967/0895-3988.2012.03.001.

10. Yang Y.N., Ma Y.T., Liu F., et al. Incidence and distributing feature of chronic heart failure in adult population of Xinjiang. Abstract. Zhonghua Xin Xue Guan Bing Za Zhi. 2010;38:460-4.

11. Okamoto H., Kitabatake A. The epidemiology of heart failure in Japan. Nihon Rinsho. 2003;61:709-14. DOI:10.1111/j.1365-2125.2005.02447.x.

12. Okura Y., Ramadan M.M., Ohno Y., et al. Impending epidemic: future projection of heart failure in Japan to the year 2055. Circ J. 2008;72:489-91. DOI:10.1253/circj.72.489.

13. Konishi M., Ishida J., Springer J., et al. Heart failure epidemiology and novel treatments in Japan: facts and numbers. ESC Heart Failure. 2016;3:145-51. DOI:10.1002/ehf2.12103.

14. Lam CSP. Heart failure in Southeast Asia: facts and numbers. ESC Heart Failure. 2015;2:46-49. DOI:10.1002/ehf2.12036.

15. Sahle B.W., Owen A.J., Mutowo M.P., et al. Prevalence of heart failure in Australia: a systematic review. BMC Cardiovasc Disord. 2016;16:32. DOI:10.1186/s12872-016-0208-4.

16. Fomin I.V. Chronic heart failure in Russian Federation: what do we know and what to do. Russian Journal of Cardiology. 2016;(8):7-13 (In Russ.). DOI:10.15829/1560-4071-2016-8-7-13.

17. Tereshchenko S.N., Zhirov I.V., Narusov O.Yu., et al. Clinical guidelines for the diagnosis and treatment of chronic and acute heart failure. Cardiologicheskii Vestnik. 2016;2:3-33 (In Russ.).

18. Nieminen M.S., Brutsaert D., Dickstein K., et al. EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27:2725-36. DOI:10.1093/eurheartj/ehl193.

19. Crespo-Leiro M.G., Anker S.D., Maggioni A.P., et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur J Heart Fail. 2016;18:613-25. DOI:10.1002/ejhf.566.

20. Youn Y.J., Yoo B.S., Lee J.W., et al. Treatment performance measures affect clinical outcomes in patients with acute systolic heart failure: report from the Korean Heart Failure Registry. Circ J. 2012;76:1151-58. DOI:10.1253/circj.cj-11-1093.

21. Tsuchihashi-Makaya M., Hamaguchi S., Kinugawa S., et al. JCARE-CARD Investigators. Characteristics and outcomes of hospitalized patients with heart failure and reduced vs preserved ejection fraction. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2009;73:1893-900. DOI:10.1253/circj.cj-09-0254.

22. Teng T.H., Katzenellenbogen J.M., Hung J., et al. Rural-urban differentials in 30-day and 1-year mortality following first-ever heart failure hospitalisation in Western Australia: a populationbased study using data linkage. BMJ Open. 2014;4:e004724. DOI:10.1136/bmjopen-2013-004724.

23. McLean A.S., Eslick G.D., Coats A.J. The epidemiology of heart failure in Australia. Int J Cardiol. 2007;118:370-4. DOI:10.1016/j.ijcard.2006.07.050.

24. Stewart S., Ekman I., Ekman T., et al. Population impact of heart failure and the most common forms of cancer: a study of 1 162 309 hospital cases in Sweden (1988 to 2004). Circ Cardiovasc Qual Outcomes. 2010;3:573-80. DOI:10.1161/CIRCOUTCOMES.110.957571.

25. Hawkins N.M., Petrie М.С., Jhund S.P., et al. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur. J. Heart Fail. 2009;11:130-9. DOI:10.1093/eurjhf/hfn013.

26. Vos T., Flaxman A.D., Naghavi M., et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163-96. DOI:10.1093/eurjhf/hfn013.

27. Fomin I.V. Hypertension in the Russian Federation - the last ten years. What’s next? Heart 2007;3:120-2 (In Russ.).

28. Fomin I.V. Epidemiology of chronic heart failure in the Russian Federation. In: Ageev F.T., Arutyunov G.P., Belenkov Yu.N., et al. Chronic heart failure. Moscow: GEOTAR-Media; 2010: P.7-77 (In Russ.).

29. Ziaeian B., Fonarow G.C. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368-78. DOI:10.1038/nrcardio.2016.25.

30. Zarrinkoub R., Wettermark B., Wändell P., et al. The epidemiology of heart failure based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail. 2013;15:995-1002. DOI:10.1093/eurjhf/hft064.

31. Moran A.E., Forouzanfar M.H., Roth G.A., et al. The global burden of ischemic heart disease in 1990 and 2010: the global burden of disease 2010 study. Circulation. 2014;129:1493-501. DOI:10.4103/1735-1995.172832.

32. Gerber Y., Weston S.A., Redfield M.M., et al. A contemporary appraisal of the heart failure epidemic in Olmsted County., Minnesota., 2000 to 2010. JAMA Intern Med. 2015;175:996-1004. DOI:10.1001/jamainternmed.2015.0924.

33. Ponikowski P., Voors A.A., Anker S.D., et al. Authors/Task Force Members. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129-200. DOI:10.1093/eurheartj/ehw128.

34. Lähteenvuo J., Rosenzweig A. Effects of aging on angiogenesis. Circ Res. 2012;110(9):1252-64. DOI:10.1161/CIRCRESAHA.111.246116.

35. Jin S., Patterson C. The opening act: Vasculogenesis and the origins of circulation. Arterioscler Thromb Vasc Biol. 2009;29:623-9. DOI:10.1161/ATVBAHA.107.161539.

36. Gomes F.G., Nedel F., Alves A.M., et al. Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci. 2013;92(2):101-7. DOI:10.1016/j.lfs.2012.10.008.

37. Sokolov D.I. Vasculogenesis and angiogenesis in development of a placenta. Journal of Obstetrics and Women's Diseases. 2007;3:129-33 (In Russ.).

38. Yan Z., Okutsu M., Akhtar Y., Lira V. Regulation of exercise-induced fiber type transformation., mitochondrial biogenesis., and angiogenesis in skeletal muscle. J Appl Physiol. 2011;110:264-74. DOI:10.1152/japplphysiol.00993.2010.

39. Khurana R., Simons M., Martin J.F., Zachary I.C. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation. 2005;112(12):1813-24. DOI:10.1161/CIRCULATIONAHA.105.535294.

40. Malassine A., Frendo J.L., Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9(6):531-9. DOI:10.1093/humupd/dmg043.

41. Castellucci M., Kosanke G., Verdenelli F., et al. Villous sprouting: fundamental mechanisms of human placental development. Hum Reprod Update. 2000;6(5):485-94. DOI:10.1093/humupd/6.5.485.

42. Gogiraju R., Bochenek M.L., Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med. 2019;6:20. DOI:10.3389/fcvm.2019.00020.

43. Tromp J., Khan M.A., Klip I.T., et al. Biomarker Profiles in Heart Failure Patients With Preserved and Reduced Ejection Fraction. J Am Heart Assoc. 2017;6(4):pii e003989.

44. Morine KJ., Paruchuri V., Qiao X., et al. Circulating Multimarker Profile of Patients with Symptomatic Heart Failure Supports Enhanced Fibrotic Degradation and Decreased Angiogenesis. Biomarkers. 2016;21(1):91-7. DOI:10.1161/JAHA.116.003989.

45. Nakamura T., Funayama H., Kubo N., et al. Elevation of plasma placental growth factor in the patients with ischemic cardiomyopathy. Int J Cardiol. 2009;131:186-91. DOI:10.1016/j.ijcard.2007.10.050.

46. Arakawa H., Ikeda U., Hojo Y., et al. Decreased serum vascular endothelial growth factor concentrations in patients with congestive heart failure. Heart. 2003;89(2):207-208. DOI:10.1136/heart.89.2.207.

47. Iguchi M., Ura S., Masunaga N., et al. Relationship Between VEGF-C Levels and All-cause Mortality in Patients with Chronic Heart Failure. Eur Cardiol. 2018;13(2):129. DOI:10.15420/ecr.2018.13.2.PO10.

48. Borné Y., Gränsbo K., Nilsson J., et al. Vascular Endothelial Growth Factor D., Pulmonary Congestion., and Incidence of Heart Failure. Journal of the American College of Cardiology. 2018;71(5):580-2. DOI:10.1016/j.jacc.2017.11.058.

49. Arsic N., Zacchigna S., Zentilin L., et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10(5):844-54. DOI:10.1016/j.ymthe.2004.08.007.

50. Cheng D., Rodriguez R.M., Perkett E.A., et al. Vascular endothelial growth factor in pleural fluid. Chest 1999;116:760-5. DOI:10.1378/chest.116.3.760.

51. Teplyakov A.T., Grakova E.V., Kalyuzhin V.V., et al. New opportunities for acute decompensated heart failure diagnostics and clinical value of growth factors: VEGF, PDGF-AB, FGF basic, tissue inhibitor of metalloproteinase-1, and lipoprotein-associated phospholipase A2. Sib Med J. 2015;30(2):50-60 (In Russ.).

52. Martínez-Sales V., Sánchez-Lázaro I., Vila V., et al. Circulating endothelial cells in patients with heart failure and left ventricular dysfunction. Dis Markers. 2011;31(2):75-82. DOI:10.3233/DMA-2011-0801.

53. Erturk I., Saglam K., Elasan S., et al. Evaluation of the effects of different treatment modalities on angiogenesis in heart failure patients with reduced/mid-range ejection fraction via VEGF and sVEGFR-1. Saudi Med J. 2018;39(10):1028-34. DOI:10.15537/smj.2018.10.22946.

54. Small H.Y., Montezano A.C., Rios F.J., et al. Hypertension due to antiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol. 2014;30:534-43. DOI:10.1016/j.cjca.2014.02.011.

55. Liu D., Song J., Ji X., et al. Association of Genetic Polymorphisms on VEGFA and VEGFR2 With Risk of Coronary Heart Disease. Medicine (Baltimore). 2016;95(19):e3413. DOI:10.1097/MD.0000000000003413.

56. Nako H., Kataoka K., Koibuchi N., et al. Novel mechanism of angiotensin II-induced cardiac injury in hypertensive rats: the critical role of ASK1 and VEGF. Hypertens Res. 2012;35:194-200. DOI:10.1038/hr.2011.175.

57. Xu X.H., Xu J., Xue L., et al. VEGF attenuates development from cardiac hypertrophy to heart failure after aortic stenosis through mitochondrial mediated apoptosis and cardiomyocyte proliferation. J Cardiothorac Surg. 2011;6:54. DOI:10.1186/1749-8090-6-54.

58. Ruixing Y., Dezhai Y., Hai W., et al. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur J Heart Fail. 2007;9:343-51. DOI:10.1016/j.ejheart.2006.10.007.

59. Pepe M., Mamdani M., Zentilin L., et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res. 2010;106(12):1893-903. DOI:10.1161/CIRCRESAHA.110.220855.

60. Serpi R., Tolonen A.M., Huusko J., et al. Vascular endothelial growth factor-B gene transfer prevents angiotensin II-induced diastolic dysfunction via proliferation and capillary dilatation in rats. Cardiovasc Res. 2011;89:204-13. DOI:10.1038/mt.2012.145.

61. Huusko J., Lottonen L., Merentie M., et al. AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol Ther. 2012;20(12):2212-21.

62. Symes J.F., Losordo D.W., Vale P.R., et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg. 1999;68:830-6. DOI:10.1016/s0003-4975(99)00807-3.

63. Fortuin F.D., Vale P., Losordo D.W., et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol. 2003;92:436-9. DOI:10.1016/s0002-9149(03)00661-1.

64. Reilly J.P., Grise M.A., Fortuin F.D., et al. Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in nooption patients. J Interv Cardiol. 2005;18:27-31. DOI:10.1111/j.1540-8183.2005.04026.x.

65. Vale P.R., Losordo D.W., Milliken C.E., et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF165 gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation. 2000;102:965-74. DOI:10.1161/01.cir.102.9.965.

66. Sarkar N., Rück A., Källner G., et al. Effects of intramyocardial injection of phVEGF-A165 as sole therapy in patients with refractory coronary artery disease - 12-month follow-up: angiogenic gene therapy. J Intern Med. 2001;250:373-81. DOI:10.1046/j.1365-2796.2001.00905.x.

67. Favaloro L., Diez M., Mendiz O., et al. High-dose plasmid-mediated VEGF gene transfer is safe in patients with severe ischemic heart disease (Genesis-I). A phase I., open-label., two-year follow-up trial. Catheter Cardiovasc Interv. 2013;82(6):899-906. DOI:10.1002/ccd.24555.

68. Losordo D.W., Vale P.R., Hendel R.C., et al. Phase 1/2 placebo-controlled., double-blind., dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation. 2002;105:2012-18. DOI:10.1161/01.cir.0000015982.70785.b7.

69. Gyöngyösi M., Khorsand A., Zamini S., et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicentre double-blind randomized study. 2005;112(9 Suppl):I157-65. DOI:10.1161/01.CIRCULATIONAHA.105.525782.

70. Stewart D.J., Kutryk M.J., Fitchett D., et al. VEGF gene therapy fails to improve perfusion of ischaemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther. 2009;17:1109-15. DOI:10.1038/mt.2009.70.

71. Kukula K., Chojnowska L., Dąbrowski M., et al. Intramyocardial plasmid- encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J. 2011;161:581-9. DOI:10.1016/j.ahj.2010.11.023.

72. Hedman M., Hartikainen J., Syvänne M., et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107(21):2677-683. DOI:10.1161/01.CIR.0000070540.80780.92.

73. Rosengart T.K., Lee L.Y., Patel S.R., et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation. 1999;100:468-74. DOI:10.1161/01.cir.100.5.468.

74. Taimeh Z., Loughran J., Birks E.J., et al. Vascular endothelial growth factor in heart failure. Nat Rev Cardiol. 2013;10(9):519-30. DOI:10.1038/nrcardio.2013.94.

75. Robinson E.S., Khankin E.V., Karumanchi S.A., et al. Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol. 2010;30:591-601. DOI:10.1016/j.semnephrol.2010.09.007.

76. Herrmann J., Yang E.H., Iliescu C.A., et al. Vascular toxicities of cancer therapies: the old and the new-an evolving avenue. Circulation. 2016;133:1272-89. DOI:10.1161/CIRCULATIONAHA.116.024415.

77. Izzedine H., Ederhy S., Goldwasser F., et al. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20:807-15. DOI:10.1093/annonc/mdn713.

78. Touyz R.M., Herrmann S.M.S., Herrmann J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. J Am Soc Hypertens. 2018;12(6):409-25. DOI:10.1016/j.jash.2018.03.008.

79. Abdel-Qadir H., Ethier J.L., Lee D.S., et al. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat Rev. 2017;53:120-7. DOI:10.1016/j.ctrv.2016.12.002.

80. Miyamoto T., Qureshi R.A., Heimburger O., et al. Inverse relationship between the inflammatory marker pentraxin-3, fat body mass, and abdominal obesity in end-stage renal disease. Clin J Am Soc Nephrol. 2011;6:2785-91. DOI:10.2215/CJN.02320311.

81. Fornai F., Carrizzo A., Forte M., et al. The inflammatory protein Pentraxin 3 in cardiovascular disease. Immun Ageing. 2016;13(1):25. DOI:10.1186/s12979-016-0080-1.

82. Ristagno G., Fumagalli F., Bottazzi B., et al. Pentraxin 3 in Cardiovascular Disease. Front Immunol. 2019;10:823. DOI:10.3389/fimmu.2019.00823.

83. Jenny N.S., Blumenthal R.S., Kronmal R.A., et al. Associations of pentraxin 3 with cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. J Thromb Haemost. 2014;12:999-1005. DOI:10.1111/jth.12557.

84. Altay S., Cakmak H.A., Kemaloglu O.T., et al. Long-term prognostic significance of pentraxin-3 in patients with acute myocardial infarction: 5-year prospective cohort study. Anatol J Cardiol. 2017;17:202-9. DOI:10.14744/AnatolJCardiol.2016.7307.

85. Latini R., Maggioni A.P., Peri G., et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004;110:2349-54. DOI:10.1161/01.CIR.0000145167.30987.2E.

86. Dubin R., Li Y., Ix J.H., et al. Associations of pentraxin-3 with cardiovascular events., incident heart failure., and mortality among persons with coronary heart disease: data from the Heart and Soul Study. Am Heart J. 2012;163:274-9. DOI:10.1016/j.ahj.2011.11.007.

87. Liu H., Guo X., Yao K., et al. Pentraxin-3 Predicts Long-Term Cardiac Events in Patients with Chronic Heart Failure. Biomed Res Int. 2015;2015:817615. DOI:10.1155/2015/817615.

88. Abernethy A., Raza S., Sun J.L., et al. Pro-Inflammatory Biomarkers in Stable Versus Acutely Decompensated Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2018;7(8):e007385. DOI:10.1161/JAHA.117.007385.

89. Latini R., Gullestad L., Masson S., et al. Pentraxin-3 in chronic heart failure: the CORONA and GISSI-HF trials. Eur J Heart Fail. 2012;14:992-9. DOI:10.1093/eurjhf/hfs092.

90. Matsubara J., Sugiyama S., Nozaki T., et al. Incremental prognostic significance of the elevated levels of pentraxin 3 in patients with heart failure with normal left ventricular ejection fraction. J Am Heart Assoc. 2014;3:e000928. DOI:10.1161/JAHA.114.000928.

91. Kotooka N., Inoue T., Aoki S., et al. Prognostic value of pentraxin 3 in patients with chronic heart failure. Int J Cardiol. 2008;130:1922. DOI:10.1016/j.ijcard.2007.07.168.

92. Suzuki S., Takeishi Y., Niizeki T., et al. Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. Am Heart J. 208;155:75-81. DOI:10.1016/j.ahj.2007.08.013.

93. Matsubara J., Sugiyama S., Nozaki T., et al. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. J Am Coll Cardiol. 2011;57:861-9. DOI:10.1016/j.jacc.2010.10.018.

94. Ishino M., Takeishi Y., Niizeki T., et al. Risk stratification of chronic heart failure patients by multiple biomarkers: implications of BNP, H-FABP, and PTX3. Circ J. 2008;72:1800-5. DOI:10.1253/circj.cj-08-0157.

95. Song W., Wang X. The role of TGFβ1 and LRG1 in cardiac remodelling and heart failure. Biophys Rev. 2015;7(1):91-104. DOI:10.1007/s12551-014-0158-y.

96. Brooks W.W., Conrad C.H. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol. 2000;32:187-95. DOI:10.1006/jmcc.1999.1065.

97. Schultz J.J., Witt S.A., Glascock B.J., et al. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest. 2002;109:787-96. DOI:10.1172/JCI14190.

98. Sakata Y., Chancey A.L., Divakaran V.G., et al. Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol. 2008;103:60-8. DOI:10.1007/s00395-007-0689-5.

99. Kuwahara F., Kai H., Tokuda K., et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106:130-5. DOI:10.1161/01.cir.0000020689.12472.e0.

100. Wang Z., Stuckey D.J., Murdoch C.E., et al. Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor. Cell Death Dis. 2018;9(6):613. DOI:10.1038/s41419-018-0573-2.

101. Engebretsen K.V., Skårdal K., Bjørnstad S., et al. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16., an orally active inhibitor of ALK5. J Mol Cell Cardiol. 2014;76:148-57. DOI:10.1016/j.yjmcc.2014.08.008.

102. Ikeuchi M., Tsutsui H., Shiomi T., et al. Inhibition of TGF‐beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res. 2004;64:526-35. DOI:10.1016/j.cardiores.2004.07.017.

103. Lucas J.A., Zhang Y., Li P., et al. Inhibition of transforming growth factor-beta signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart. Am J Physiol Heart Circ Physiol. 2010;298:H424-32. DOI:10.1152/ajpheart.00529.2009.

104. Dobaczewski M., Chen W., Frangogiannis N.G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600-6. DOI:10.1016/j.yjmcc.2010.10.033.

105. Hein S., Arnon E., Kostin S., et al. Progression from compensated hypertrophy to failure in the pressure‐overloaded human heart: Structural deterioration and compensatory mechanisms. Circulation. 2003;107:984-91. DOI:10.1023/a:1007182617215.

106. Pauschinger M., Knopf D., Petschauer S., et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation. 1999;99:2750-6. DOI:10.1161/01.cir.99.21.2750.

107. Song W., Wang X. The role of TGFβ1 and LRG1 in cardiac remodelling and heart failure. Biophys Rev. 2015;7(1):91-104. DOI:10.1007/s12551-014-0158-y.

108. Elsasser A., Decker E., Kostin S., et al. A self‐perpetuating vicious cycle of tissue damage in human hibernating myocardium. Mol Cell Biochem. 2000;213:17-28. DOI:10.1023/a:1007182617215.

109. Fukumoto H., Naito Z., Asano G., et al. Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J Atheroscler Thromb 1998;5:29-35. DOI:10.5551/jat1994.5.29.

110. Edgley A.J., Krum H., Kelly D.J. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-β. Cardiovasc Ther. 2012;30(1):e30-40. DOI:10.1111/j.1755-5922.2010.00228.x.

111. Deng H., Ouyang W., Zhang L., et al. LncRNA GASL1 is downregulated in chronic heart failure and regulates cardiomyocyte apoptosis. Cell Mol Biol Lett. 2019;24:41. DOI:10.1186/s11658-019-0165-x.

112. Khan S., Joyce J., Margulies K.B., et al. Enhanced bioactive myocardial transforming growth factor-β in advanced human heart failure. Circ J. 2014;78(11):2711-8. DOI:10.1253/circj.cj-14-0511.

113. Zhang F., Dang Y., Li Y., et al. Cardiac Contractility Modulation Attenuate Myocardial Fibrosis by Inhibiting TGF-β1/Smad3 Signaling Pathway in a Rabbit Model of Chronic Heart Failure. Cell Physiol Biochem. 2016;39(1):294-302. DOI:10.1159/000445624.

114. Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993;73:413-23. DOI:10.1161/01.res.73.3.413.

115. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004;63:423-32. DOI:10.1016/j.cardiores.2004.04.030.

116. Gray M.O., Long C.S., Kalinyak J.E., et al. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res. 1998;40:352-63. DOI:10.1016/s0008-6363(98)00121-7.

117. Kim S., Ohta K., Hamaguchi A., et al. Effects of an AT1 receptor antagonist., an ACE inhibitor and a calcium channel antagonist on cardiac gene expressions in hypertensive rats. Br J Pharmacol. 1996;118:549-56. DOI:10.1111/j.1476-5381.1996.tb15437.x.

For citation:

Shepel R.N., Drapkina O.M. Angiogenesis in Patients with Chronic Heart Failure: Focus on Endothelial Vascular Growth Factor, Pentraxin-3 and Transforming Growth Factor Beta. Rational Pharmacotherapy in Cardiology. 0;. (In Russ.)

Views: 51

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)