Rational Pharmacotherapy in Cardiology

Advanced search

The Current Status of Direct Oral Anticoagulants in Cancer-Related Venous Thromboembolism Treatment

Full Text:


This article is a review of epidemiology, pathogenesis and treatment of venous thromboembolism (VTE) in cancer patients. In accordance with actual guidelines, the duration of anticoagulant therapy of cancer-related venous thrombosis should be at least 6 months. The use of vitamin K antagonists (VKA) is associated with an increased risk of VTE recurrence and bleeding, so low molecular weight heparin (LMWH), in particular dalteparin, has been the "gold standard" until recently. Compared to VKA, prolonged use of LMWH can reduce the incidence of VTE recurrence without affecting the risk of bleeding or death. The main disadvantage of LMWH is low compliance, leading to premature discontinuation of treatment or switching to alternative anticoagulants. Direct oral anticoagulants (DOACs) have changed the situation. Compared to VKA, they demonstrated higher efficacy with a similar (or improved for individual DOACs) safety in patients with cancer-related VTE. Recently, the results of studies comparing the use of DOACs with dalteparin in cancer patients have been published: SELECT-D (rivaroxaban), HOKUSAI-VTE Cancer (edoxaban), ADAM VTE (apixaban), CARAVAGGIO (apixaban). Rivaroxaban showed higher efficacy than dalteparin with a similar risk of major bleeding, but an increased risk of clinically relevant non-major (CRNM) bleeding. Edoxaban had the same efficacy as dalteparin but increased risk of major but not CRNM bleeding. Apixaban showed similar efficacy and safety as dalteparin in the CARAVAGGIO study, but did not provide higher safety in the ADAM VTE study. It was noted that gastrointestinal and urogenital bleeding dominated in the structure of hemorrhagic complications of DOACs. The results of published trials are reflected in the current guidelines of the specialized societies. DOACs (particularly, rivaroxaban and edoxaban) are recommended for the VTE treatment in cancer patients.

About the Authors

К. V. Lobastov
Pirogov Russian National Research Medical University
Russian Federation

Kirill V. Lobastov – MD, PhD, Associate Professor, Chair of General Surgery and Radiology

Ostrovitianova ul. 1, Moscow, 117997

I. V. Schastlivtsev
Pirogov Russian National Research Medical University
Russian Federation

Ilya V. Schastlivtsev – MD, PhD, Associate Professor, Chair of General Surgery and Radiology

Ostrovitianova ul. 1, Moscow, 117997


1. Anderson, F.A., Jr., Spencer, F.A. Risk factors for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I9-16. DOI:10.1161/01.CIR.0000078469.07362.E6.

2. Heit, J.A., Silverstein, M.D., Mohr, D.N., et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med. 2000;160(6):809-15. DOI:10.1001/archinte.160.6.809.

3. Blom, J.W., Doggen, C.J., Osanto, S., Rosendaal, F.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA;2005:293(6):715-22. DOI:10.1001/jama.293.6.715.

4. Blom, J.W., Vanderschoot, J.P., Oostindier, M.J., et al. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study. J Thromb Haemost. 2006;4(3):529-35. DOI:10.1111/j.1538-7836.2006.01804.x.

5. Bergqvist D. Risk of venous thromboembolism in patients undergoing cancer surgery and options for thromboprophylaxis. J Surg Oncol. 2007;95(2):167-74. DOI:10.1002/jso.20625.

6. Barsam S.J., Patel R., Arya R. Anticoagulation for prevention and treatment of cancer-related venous thromboembolism. Br J Haematol. 2013. 161(6):764-77. DOI:10.1111/bjh.12314.

7. Agnelli G., Bolis G., Capussotti L., et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: the @RISTOS project. Ann Surg. 2006;243(1):89-95. DOI:10.1097/01.sla.0000193959.44677.48.

8. Levitan N., Dowlati A., Remick S.C., et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore). 1999;78(5):285-91.

9. Sørensen H.T., Mellemkjaer L., Olsen J.H., Baron J.A. Prognosis of cancers associated with venous thromboembolism. N Engl J Med. 2000;343(25):1846-50. DOI:10.1056/nejm200012213432504.

10. Marks M.A., Engels E.A. Venous thromboembolism and cancer risk among elderly adults in the United States. Cancer Epidemiol Biomarkers Prev. 2014;23(5):774-83. DOI:10.1158/1055-9965.Epi-13-1138.

11. Donnellan E., Kevane B., Bird B.R., Ainleb F.N. Cancer and venous thromboembolic disease: from molecular mechanisms to clinical management. Curr Oncol. 2014;21(3):134-43. DOI:10.3747/co.21.1864.

12. Geddings J.E., Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood, 2013. 122(11):1873-80. DOI:10.1182/blood-2013-04-460139.

13. Cesarman-Maus G., Braggio E., Maldonado H., Fonseca R. Absence of tissue factor expression by neoplastic plasma cells in multiple myeloma. Leukemia. 2012;26(7):1671-4. DOI:10.1038/leu.2012.43.

14. Thaler J., Ay C., Mackman N., et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost. 2012;10(7):1363-70. DOI:10.1111/j.1538-7836.2012.04754.x

15. Dementeva G.I., Lobastov K.V., Skopintsev V.B., L. Laberko L.A. The possibility of global assessment tests of the hemostatic system in the prediction of venous thromboembolism in surgical practice. Hirurg. 2017;(4):27-38 (In Russ.)

16. Sautina E.V., Dementieva G.I., Soshitova N.P., et al. Detection and clinical relevance of basal hypercoagulation in patients with colorectal cancer. Hirurg. 2018;164(9-10):35-47 (In Russ.)

17. Lobastov K.V., Barinov V.E., Schastlivtsev I.V., Laberko L.A. Caprini score as individual risk assessment model of postoperative venous thromboembolism in patients with high surgical risk. Khirurgiia (Mosk). 2014;(12):16-23 (In Russ.)

18. Khorana A.A., Kuderer N.M., Culakova E., et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111(10):4902-7. DOI:10.1182/blood2007-10-116327.

19. Ay C., Dunkler D., Marosi C., et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24):5377-82. DOI:10.1182/blood-2010-02-270116

20. Pabinger I., van Es N., Heinze G., et al. A clinical prediction model for cancer-associated venous thromboembolism: a development and validation study in two independent prospective cohorts. Lancet Haematol. 2018;5(7):e289-e298. DOI:10.1016/s2352-3026(18)30063-2.

21. Barbar S., Noventa F., Rossetto V., et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8(11):2450-7. DOI:10.1111/j.1538-7836.2010.04044.x.

22. Monreal M., Falgá C., Valdés M., et al. Fatal pulmonary embolism and fatal bleeding in cancer patients with venous thromboembolism: findings from the RIETE registry. J Thromb Haemost. 2006;4(9):1950-6. DOI:10.1111/j.1538-7836.2006.02082.x.

23. Kearon C., Akl E.A., Ornelas J., et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest. 2016;149(2):315-352. DOI:10.1016/j.chest.2015.11.026.

24. Lobastov KV. Contemporary approaches to determine the duration of anticoagulant therapy for venous thromboembolism. Khirurgiia (Mosk). 2019;(5):94-103 (In Russ.) DOI:10.17116/hirurgia201905194.

25. Key N.S., Khorana A.A., Kuderer N.M., et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol. 2020;38(5):496- 520. DOI:10.1200/jco.19.01461.

26. Prandoni P., Lensing A.W., Piccioli A., et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood. 2002;100(10):3484-8. DOI:10.1182/blood-2002-01-0108.

27. Lee A.Y., Levine M.N., Baker R.I., et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349(2):146-53. DOI:10.1056/NEJMoa025313.

28. Carrier M., Prandoni P. Controversies in the management of cancer-associated thrombosis. Expert Rev Hematol. 2017;10(1):15-22. DOI:10.1080/17474086.2017.1257935.

29. Kirkilesis G.I., Kakkos S.K., Tsolakis I.A. Editor's Choice - A Systematic Review and Meta-Analysis of the Efficacy and Safety of Anticoagulation in the Treatment of Venous Thromboembolism in Patients with Cancer. Eur J Vasc Endovasc Surg. 2019;57(5):685-701. DOI:10.1016/j.ejvs.2018.11.004.

30. Khorana A.A., McCrae K.R., Milentijevic D., et al. Current practice patterns and patient persistence with anticoagulant treatments for cancer-associated thrombosis. Res Pract Thromb Haemost. 2017;1(1):14-22. DOI:10.1002/rth2.12002.

31. Prins M.H., Lensing A.W., Bauersachs R., et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thrombosis Journal. 2013;11(1):21. DOI:10.1186/1477-9560-11-21.

32. Agnelli G., Buller H.R., Cohen A., et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799-808. DOI:10.1056/NEJMoa1302507.

33. Büller H.R., Décousus H., Grosso M.A., et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406-15. DOI:10.1056/NEJMoa1306638.

34. Schulman S., Kakkar A.K., Goldhaber S.Z., et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation. 2014;129(7):764-72. DOI:10.1161/CIRCULATIONAHA.113.004450.

35. Li A., Garcia D.A., Lyman G.H., Carrier M. Direct oral anticoagulant (DOAC) versus low-molecularweight heparin (LMWH) for treatment of cancer associated thrombosis (CAT): A systematic review and meta-analysis. Thromb Res. 2019;173:158-63. DOI:10.1016/j.thromres.2018.02.144.

36. Young A.M., Marshall A., Thirlwall J., et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017-23. DOI:10.1200/jco.2018.78.8034.

37. Marshall A., Levine M., Hill C., et al. Treatment of cancer-associated venous thromboembolism: 12- month outcomes of the placebo versus rivaroxaban randomization of the SELECT-D Trial (SELECT-D: 12m). J Thromb Haemost. 2020;18(4):905-15. DOI:10.1111/jth.14752.

38. McBane R.D. 2nd, Wysokinski W.E., Le-Rademacher J.G., et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE trial. J Thromb Haemost. 2020;18(2):411-21. DOI:10.1111/jth.14662.

39. Agnelli G., Becattini C., Meyer G., et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N Engl J Med. 2020 Mar 29. DOI:10.1056/NEJMoa1915103. [Epub ahead of print].

40. Raskob G.E., van Es N., Verhamme P., et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018;378(7):615-24. DOI:10.1056/NEJMoa1711948.

41. Napolitano M., Saccullo G., Malato A., et al. Optimal duration of low molecular weight heparin for the treatment of cancer-related deep vein thrombosis: the Cancer-DACUS Study. J Clin Oncol. 2014;32(32):3607-12. DOI:10.1200/jco.2013.51.7433.

42. Kraaijpoel N., Di Nisio M., Mulder F.I., et al. Clinical Impact of Bleeding in Cancer-Associated Venous Thromboembolism: Results from the Hokusai VTE Cancer Study. Thromb Haemost. 2018;118(8):1439-49. DOI:10.1055/s-0038-1667001.

43. McBane R.D., Wysokinski W.E., Le-Rademacher J., et al. Apixaban, Dalteparin, in Active Cancer Associated Venous Thromboembolism, the ADAM VTE Trial. Blood. 2018;132(Supplement 1):421. DOI:10.1182/blood-2018-99-118808.

44. Carrier M., Abou-Nassar K., Mallick R., et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N Engl J Med. 2019;380(8):711-9. DOI:10.1056/NEJMoa1814468.

45. . Wysokinski W.E., Houghton D.E., Casanegra A.I., et al. Comparison of apixaban to rivaroxaban and enoxaparin in acute cancer-associated venous thromboembolism. Am J Hematol. 2019;94(11): 1185-1192. DOI:10.1002/ajh.25604.

46. Schulman S., Kearon C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. Journal of thrombosis and haemostasis : J Thromb Haemost. 2005;3(4):692-4. DOI:10.1111/j.1538-7836.2005.01204.x.

47. Khorana A.A., Noble S., Lee A.Y.Y., et al. Role of direct oral anticoagulants in the treatment of cancer-associated venous thromboembolism: guidance from the SSC of the ISTH. J Thromb Haemost. 2018;16(9):1891-4. DOI:10.1111/jth.14219.

48. Cancer-assotiated venous thrombotic disease. NCCN Clinical Practice Guidlines in Oncology (NCCN Guidlines) 2019. Version 1.2019 - February 2019. [cited by April 08, 2020]. Available from:

49. Konstantinides S.V., Meyer G., Becattini C., et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543-603. DOI:10.1093/eurheartj/ehz405.


For citations:

Lobastov К.V., Schastlivtsev I.V. The Current Status of Direct Oral Anticoagulants in Cancer-Related Venous Thromboembolism Treatment. Rational Pharmacotherapy in Cardiology. 2020;16(2):286-295. (In Russ.)

Views: 470

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)