Rational Pharmacotherapy in Cardiology

Advanced search

Gut Microbiota Composition and Metabolites as the new Determinants of Cardiovascular Pathology Development

Full Text:


Chronic noncommunicable diseases represent one of the key medical problems of the XXI century. In this group cardiovascular diseases (CVD) are known to be the leading cause of death which pathogenesis still has the potential to be more profoundly revealed in order to discover its yet unknown but essential factors. The last decades are marked by the active investigation into the gut bacterial role in the initiation and progression of CVD. The result of this investigation has been the appreciation of microbiome as the potentially new cardiovascular risk factor. The development of sequencing techniques, together with bioinformatics analysis allowed the scientists to intensively broaden the understanding of the gut microbiota composition and functions of its metabolites in maintaining the health and the development of atherosclerosis, arterial hypertension and heart failure. The interaction between macro- and microorganisms is mediated through the variety of pathways, among which the key players are thought to be trimethylamine-N-oxide (TMAO), short chain fatty acids (SCFA) and secondary bile acids. TMAO is known due to its role in atherosclerosis development and the increase in major cardiovascular events. In the majority of research SCFA and secondary bile acids have demonstrated protective role in CVD. The great attention is being paid to the role of lipopolysaccharide of gram negative bacteria in the development of systemic low-grade inflammation due to the metabolic endotoxemia which contributes to the progression of CVD. The described interactions draw attention to the opportunity to influence on the certain mechanisms of CVD pathogenesis through the modulation of microbiota composition and function. The review is aimed at highlighting the current data about the mechanisms by which the gut microbiota and its metabolites may increase cardiovascular risk and events rate as well as discussing the existing results and future perspective of bacterial systemic effects modulation.

About the Authors

O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Oxana M. Drapkina – MD, PhD, Professor, Corresponding Member of the Russian Academy of Sciences, Director

Petroverigsky per. 10, Moscow, 101990 

A. N. Kaburova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Anastasia N. Kaburova – Junior Researcher

Petroverigsky per. 10, Moscow, 101990 


1. Lozupone C.A., Stombaugh J.I., Gordon J.I., et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-30. DOI:10.1038/nature11550.

2. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14. DOI:10.1038/nature11234.

3. Tang W.H., Hazen S.L. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204-11. DOI:10.1172/JCI72331.

4. Cenit M.C., Matzaraki V., Tigchelaar E.F., et al. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica et Biophysica Acta. 2014;1842(10):1981-92. DOI:10.1016/j.bbadis.2014.05.023.

5. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature. 2019;569(7758):641-8. DOI:10.1038/s41586-019-1238-8.

6. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65. DOI:10.1038/nature08821.

7. Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45-50. DOI:10.1038/nature11711.

8. Kau A.L., Ahern P.P., Griffin N.W., et al. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474:327-36. DOI:10.1038/nature10213.

9. Brennan C.A., Garrett W.S. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395-411. DOI:10.1146/annurev-micro-102215-095513.

10. Honda K., Littman D.R. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75-84. DOI:10.1038/nature18848.

11. Wang K., Wu L.Y., Dou C.Z., et al. Research Advance in Intestinal Mucosal Barrier and Pathogenesis of Crohn's Disease. Gastroenterol Res Pract. 2016;2016:9686238. DOI:10.1155/2016/9686238.

12. Hegyi P., Maléth J., Walters J.R., et al. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev. 2018;98(4):1983-2023. DOI: 10.1152/physrev.00054.2017.

13. Pearson J.P., Brownlee I.A. The interaction of large bowel microflora with the colonic mucus barrier. International Journal of Inflammation. 2010;2010:9. DOI:10.4061/2010/321426.321426.

14. Arsenescu R., Bruno M.E.C., Rogier E.W., et al. Signature biomarkers in Crohn's disease: toward a molecular classification. Mucosal Immunology. 2008;1(5):399-411. DOI: 10.1038/mi.2008.32.

15. Brown J.M., Hazen S.L. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu Rev Med. 2015;66:343-59. DOI:10.1146/annurev-med-060513-093205.

16. Tang W.H., Kitai T., Hazen S.L. Gut Microbiota in Cardiovascular Health and Disease Circ Res. 2017;120(7):1183-96. DOI:10.1161/CIRCRESAHA.117.309715.

17. Tremaroli V., Karlsson F., Werling M., et al. Roux-en-y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015; 22:228-38. DOI:10.1016/j.cmet.2015.07.009.

18. Tun H.M., Leung F.C., Cheng K.M. Role of Gut Microbiota in Cardiovascular Disease that Links to Host Genotype and Diet. Intech Open. 2016:67-84. DOI:10.5772/64636.

19. Sandek A., Bauditz J., Swidsinski A., et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561-9. DOI:10.1016/j.jacc.2007.07.016.

20. DeStefano F., Anda R.F., Kahn H.S., et al. Dental disease and risk of coronary heart disease and mortality. BMJ. 1993;306:688-91. DOI:10.1136/bmj.306.6879.688.

21. Ordovas J.M., Mooser V. Metagenomics: The role of the microbiome in cardiovascular diseases. Curr Opin Lipidol. 2006;17:157-61. DOI:10.1097/HCO.0000000000000445.

22. Desvarieux M., Demmer R.T., Jacobs D.R., et al. Changes in clinical and microbiological periodontal profiles relate to progression of carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology study. J Am Heart Assoc. 2013;2:e000254. DOI:10.1161/JAHA.113.000254.

23. Piepoli M.F., Hoes A.W., Agewall S., et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Eur Heart J. 2016;37(29):2315-81. DOI: 10.1093/eurheartj/ehw106.

24. Ott S.J., El Mokhtari N.E., Musfeldt M., et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 2006;113:929-37. DOI:10.1161/CIRCULATIONAHA.105.579979.

25. Sarkar S., Das B., Banerjee S.K. Insights into the human gut microbiome and cardiovascular diseases. Journal of the Practice of Cardiovascular Sciences. 2018;4(1):10-4. DOI:10.4103/jpcs.jpcs_18_18.

26. Peluso I., Morabito G., Urban, L., et al. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets. 2012;12(4):351-60. DOI:10.2174/187153012803832602.

27. Packer C.S. Estrogen protection, oxidized LDL, endothelial dysfunction and vasorelaxation in cardiovascular disease: New insights into a complex issue. Cardiovasc Res. 2007;73(1):6-7. DOI:10.1016/j.cardiores.2006.11.013.

28. Li J., Zhao F., Wang Y., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. DOI:10.1186/s40168-016-0222-x.

29. Brown J.M., Hazen S.L. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16:171-81. DOI:10.1038/nrmicro.2017.149.

30. Chambers E.S., Preston T., Frost G., et al. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018;7(4):198-206. DOI:10.1007/s13668-018-0248-8.

31. Louis P., Young P., Holtrop G., Flint H.J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol. 2010;12(2):304-14. DOI:10.1111/j.1462-2920.2009.02066.x.

32. Kespohl M., Vachharajani N., Luu M., et al. The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4+ T Cells. Front Immunol. 2017;8:1036. DOI:10.3389/fimmu.2017.01036.

33. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5:202-7. DOI:10.4161/gmic.27492.

34. Aguilar E.C., Santos L.C., Leonel A.J., et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase downregulation in endothelial cells. J Nutr Biochem. 2016;34:99-105. DOI:10.1016/j.jnutbio.2016.05.002.

35. Aguilar E.C., Leonel A.J., Teixeira L.G., et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκ B activation. Nutr Metab Cardiovasc Dis. 2014;24:606-13. DOI: 10.1016/j.numecd.2014.01.002.

36. Suzuki T., Heaney L.M., Jones DJ., et al. Trimethylamine N-oxide and risk stratification after acute myocardial infarction. Clin Chem. 2017;63(1):420-8. DOI: 10.1373/clinchem.2016.264853.

37. Haghikia A., Li X.S., Liman T.G., et al. Gut microbiota-dependent trimethylamine n-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol. 2018;38(9):2225-35. DOI:10.1161/ATVBAHA.118.311023.

38. Troseid M., Ueland T., Hov J.R., et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277(6):717-26. DOI:10.1111/joim.12328.

39. Tang W.H., Wang Z., Levison B.S., et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575-84. DOI:10.1056/NEJMoa1109400.

40. Koeth R.A., Wang Z., Levison B.S., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-85. DOI:10.1038/nm.3145.

41. Ma G., Pan B., Chen Y., et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci Rep. 2017;37(2):BSR20160244. DOI:10.1042/BSR20160244.

42. Fu Q., Zhao M., Wang D., et al. Coronary Plaque Characterization Assessed by Optical Coherence Tomography and Plasma Trimethylamine-N-oxide Levels in Patients With Coronary Artery Disease. Am J Cardiol. 2016;118(9):1311-5. DOI:10.1016/j.amjcard.2016.07.071.

43. Seldin M.M., Meng Y., Qi H., et al. Trimethylamine N-oxide promotes vascular inflammation through signalling of mitogenactivated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5(2):e002767. DOI:10.1161/JAHA.115.002767.

44. Zhu W., Gregory J.C., Org E., et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell. 2016;165(1):111-24. DOI:10.1016/j.cell.2016.02.011.

45. Tang W.H., Wang Z., Fan Y., et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. Am Coll Cardiol. 2014;64(18):1908-14. DOI:10.1016/j.jacc.2014.02.617.

46. Chen K., Zheng X., Feng M., et al. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Front Physiol. 2017;8:139. DOI:10.3389/fphys.2017.00139.

47. Li Z., Wu Z., Yan J., et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Invest 2019;99(3):346-57. DOI:10.1038/s41374-018-0091-y.

48. Ufnal M., Jazwiec R., Dadlez M., et al. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can J Cardiol. 2014;30(12):1700-5. DOI:10.1016/j.cjca.2014.09.010.

49. Bidulescu A., Chambless L.E., Siega-Riz A.M., et al. Usual choline and betaine dietary intake and incident coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord. 2007;7:20. DOI:10.1186/1471-2261-7-20

50. Morris M.C., Manson J.E., Rosner B., et al. Fish consumption and cardiovascular disease in the physicians’ health study: A prospective study. Am J Epidemiol. 1995;142(2):166-75. DOI:10.1093/oxfordjournals.aje.a117615.

51. He K., Song Y., Daviglus M.L., et al. Accumulated evidence on fish consumption and coronary heart disease mortality: A meta-analysis of cohort studies. Circulation. 2004;109(22):2705-11. DOI: 10.1161/01.CIR.0000132503.19410.6B.

52. Wahlstrom A., Sayin S.I., Marschall H.U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41-50. DOI:10.1016/j.cmet.2016.05.005.

53. Li T., Chiang J.Y. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31(2):159-65. DOI:10.1097/MOG.0000000000000156.

54. Szeto F.L., Reardon C.A., Yoon D., et al. Vitamin D receptor signaling inhibits atherosclerosis in mice. Mol Endocrinol. 2012;26(7):1091-101. DOI:10.1210/me.2011-1329.

55. Nielsen O.H., Hansen T.I., Gubatan J.M, et al. Managing vitamin D deficiency in inflammatory bowel disease. Frontline Gastroenterol. 2019;10(4):394-400. DOI:10.1136/flgastro-2018-101055.

56. Daliri E.B., Lee B.H., Oh D.H. Current perspectives on antihypertensive probiotics. Probiot Antimicrob Proteins. 2017;9(2):91-101. DOI:10.1007/s12602-016-9241-y.

57. He M., Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54. DOI:10.1186/s13578-017-0183-1.

58. Yoo J.Y., Kim S.S. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients. 2016;8(3):173. DOI: 10.3390/nu8030173.

59. Fuentes M.C., Lajo T., Carrion J.M., et al. Cholesterol lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr. 2013;109(10):1866-72. DOI:10.1017/S000711451200373X.

60. Jones M.L., Martoni C.J., Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012;66(11):1234-1241. DOI:10.1038/ejcn.2012.126.

61. Gomez-Guzman M., Toral M., Romero M., et al. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res. 2015;59(11):2326-36. DOI:10.1002/mnfr.201500290.

62. Costabile A., Buttarazzi I., Kolida S., et al. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS One. 2017;12(12):e0187964. DOI:10.1371/journal.pone.0187964.

63. Catry E., Bindels L.B., Tailleux A., et al. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 2018;67(2):271-83. DOI:10.1136/gutjnl-2016-313316.

64. Prudêncio. C.V., Dos Santos M.T., Vanetti M.C. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. J Food Sci Technol. 2015;52(9):5408-17. DOI:10.1007/s13197-014-1666-2.

65. McDonald L.C., Gerding D.N., Johnson S., et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical Infectious Diseases. 2018;66(7):1-48. DOI:10.1093/cid/cix1085.

66. Petrof E.O., Gloor G.B., Vanner S.J., et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013; 1(3):1-12. DOI:10.1186/2049-2618-1-3.

67. Turroni F., Foroni E., Pizzetti P., et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol. 2009;75(6):1534-45. DOI:10.1128/AEM.02216-08.

68. Brunkwall L., Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017;60(6):943-51. DOI:10.1007/s00125-017-4278-3.

For citation:

Drapkina O.M., Kaburova A.N. Gut Microbiota Composition and Metabolites as the new Determinants of Cardiovascular Pathology Development. Rational Pharmacotherapy in Cardiology. 2020;16(2):277-285. (In Russ.)

Views: 345

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)