Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Left Atrial Phasic Function in Patients with Hypertension and Recurrent Atrial Fibrillation: Gender Differences of the Relationship with Diastolic Dysfunction and Central Aortic Pressure

https://doi.org/10.20996/1819-6446-2019-15-5-622-633

Full Text:

Abstract

Aim. To evaluate gender-related differences of left atrial (LA) phasic function and structural remodeling in conjunction with the parameters of left ventricular (LV) diastolic dysfunction and central aortic pressure in patients with hypertension and recurrent atrial fibrillation (AF).

Material and methods. The comparative study included 30 men and 37 women with non-valvular AF, hypertension and LV hypertrophy. Conventional echocardiographic measures were extended with LA measures, including its volume in three phases, LAemptying fraction (LAEF), passive and active ejection fraction. The parameters of central aortic pressure were estimated by applanation tonometry method.

Results. No difference was observed between LA and LV structural parameters in men and women. However, in women LAEF (39 [28;50] vs 50 [42;55]%; p=0.02) and E/E’(9.7 [7.8;12] vs 7.1 [5.6;8.6]; p=0.001) were worse than in men. Active LA ejection fraction was higher in women (31 [21;42] vs 24 [19;31]%; p=0.04), whereas passive one – in men (12 [10;14] vs 33 [23;38]%; p<0.001), respectively. Men and women had comparable heart rate (HR), central and peripheral systolic and diastolic pressure, pulse wave velocity (PWV), but women had higher augmentation index (AI) values [33 [28;39] vs 23 [21;28]%; p<0.001], even adjusted by HR (AI 75) (34 [27;39] vs 26 [20;29]%; p<0.001). Only in men PWV weakly correlated with AI 75 (r=0.44; p=0.02 versus r=-0.11; p=0.51, respectively for men and women; intergroup differences: z=2.26; p=0.012). In a multivariate regression analysis in men LAEF was significantly associated with height, weight, E’, E/E’ and glomerular filtration rate (GFR), whereas in women – with E’ and AI 75.

Conclusion. Patients of different genders with recurrent AF and hypertension have comparable LA structuralremodeling. However, women characterized by a more pronounced decrease in LAEF and impaired LV diastolic function than men. In women as distinct from men LV filling is predominantly due to LA systole. In a multivariate regression analysis in men LAEF was significantly associated with height, weight, E’, E/E’ and GFR, whereas in women – with E’ and AI 75. 

About the Authors

E. V. Kokhan
Peoples Friendship University of Russia (RUDN University)
Russian Federation

MD, Resident, Chair of Internal Medicine with Subspecialty of Cardiology and Functional Diagnostics named after Academician V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198



E. M. Ozova
Peoples Friendship University of Russia (RUDN University)
Russian Federation

MD, PhD, Assistant, Chair of Internal Medicine with Subspecialty of Cardiology and Functional Diagnostics named after Academician V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198



V. A. Romanova
Peoples Friendship University of Russia (RUDN University)
Russian Federation

MD, PhD, Assistant, Chair of Internal Medicine with Subspecialty of Cardiology and Functional Diagnostics named after Academician V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198



G. K. Kiyakbaev
Peoples Friendship University of Russia (RUDN University)
Russian Federation

MD, PhD, Professor, Chair of Internal Medicine with Subspecialty of Cardiology and Functional Diagnostics named after Academician V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198



Zh. D. Kobalava
Peoples Friendship University of Russia (RUDN University)
Russian Federation

MD, PhD, Professor, Head of Chair of Internal Medicine with Subspecialty of Cardiology and Functional Diagnostics named after Academician V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198



References

1. Gupta D.K., Shah A.M., Giugliano R.P., et al. Left atrial structure and function in atrial fibrillation: ENGAGE AF-TIMI 48. Eur Heart J. 2014;35(22):1457-65. DOI:10.1093/eurheartj/eht500.

2. Leung M., van Rosendael P.J., Abou R., et al. Left atrial function to identify patients with atrial fibrillation at high risk of stroke: new insights from a large registry. Eur Heart J. 2018;39(16):1416-25. DOI:10.1093/eurheartj/ehx736.

3. Benjamin E.J., D’Agostino R.B., Belanger A.J., et al. Left Atrial Size and the Risk of Stroke and Death. Circulation. 1995;92(4):835-41. DOI:10.1161/01.cir.92.4.835.

4. Hsiao S.H., Chiou K.R. Diastolic Heart Failure Predicted by Left Atrial Expansion Index in Patients with Severe Diastolic Dysfunction. PLoS One. 2016;11(9):e0162599. DOI:10.1371/journal.pone. 0162599.

5. Gupta S., Matulevicius S.A., Ayers C.R., et al. Left atrial structure and function and clinical outcomes in the general population. Eur Heart J. 2013;34(4):278-85. DOI:10.1093/eurheartj/ehs188.

6. Beltrami M., Palazzuoli A., Padeletti L., et al. The importance of integrated left atrial evaluation: From hypertension to heart failure with preserved ejection fraction. Int J Clin Pract. 2018;72(2):e13050. DOI:10.1111/ijcp.13050.

7. Yu H.T., Lee J.S., Kim T., et al. Advanced Left Atrial Remodeling and Appendage Contractile Dysfunction in Women Than in Men Among the Patients With Atrial Fibrillation: Potential Mechanism for Stroke. J Am Heart Assoc. 2016;5(7):pii: e003361. DOI:10.1161/JAHA.116.003361.

8. Yoshida K., Obokata M., Kurosawa K., et al. Effect of Sex Differences on the Association Between Stroke Risk and Left Atrial Anatomy or Mechanics in Patients With Atrial Fibrillation. Circ Cardiovasc Imaging. 2016;9(10):pii: e004999. DOI: 10.1161/CIRCIMAGING.116.004999.

9. Dzeshka M., Shahid F., Shantsila A., Lip G. Hypertension and atrial fibrillation: an intimate association of epidemiology, pathophysiology, and outcomes. Am J Hypertens. 2017;30(8):733-55. DOI:10.1093/ajh/hpx013.

10. Rucker-Martin C., Milliez P., Tan S., et al. Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts. Cardiovasc Res. 2006;72(1):69-79. DOI:10.1016/j.cardiores.2006.06.016.

11. De Jong A., Van Gelder I., Vreeswijk-Baudoin I., et al. Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload. PLoS One. 2013;8(9):e72651. DOI:10.1371/journal.pone.0072651.

12. Eshoo S., Ross D., Thomas L. Impact of mild hypertension on left atrial size and function. Circ Cardiovasc Imaging. 2009;2:93-99. DOI: 10.1161/CIRCIMAGING.108.793190.

13. Cameli M., Mandoli G., Mondillo S. Left atrium: the last bulwark before overt heart failure. Heart Fail Rev. 2017;22(1):123-31. DOI:10.1007/s10741-016-9589-9.

14. Matsuda M., Matsuda Y. Mechanism of left atrial enlargement related to ventricular diastolic impairment in hypertension. Clin Cardiol. 1996;19(12):954-9. DOI:10.1002/clc.4960191211.

15. Bamaiyi A.J., Norton G.R., Peterson V., et al. Limited contribution of left ventricular mass and remodelling to the impact of blood pressure on diastolic function in a community sample. J Hypertens. 2019;37(6):1191-9. DOI:10.1097/HJH.0000000000002051.

16. Okura H., Takada Y., Yamabe A., et al. Age- and Gender-Specific Changes in the Left Ventricular Relaxation. Circ Cardiovasc Imaging. 2009;2(1):41-6. DOI:10.1161/CIRCIMAGING.108.809087.

17. Kloch-Badelek M., Kuznetsova T., Sakiewicz W., et al. Prevalence of left ventricular diastolic dysfunction in European populations based on cross-validated diagnostic thresholds. Cardiovasc Ultrasound. 2012;10(1):10. DOI:10.1186/1476-7120-10-10.

18. Voors A.A., Terpstra W.F., Smit A.J., et al. Gender-related differences in left ventricular structural and functional responses to hypertension. J Hum Hypertens. 2005;19(11):915-7. DOI:10.1038/sj.jhh.1001908.

19. Hashimoto J., Imai Y., O'Rourke M.F. Indices of pulse wave analysis are better predictors of left ventricular mass reduction than cuff pressure. Am J Hypertens. 2007;20(4):378-84. DOI:10.1016/j.amjhyper.2006.09.019.

20. Kaji Y., Miyoshi T., Doi M., et al. Augmentation index is associated with B-type natriuretic peptide in patients with paroxysmal atrial fibrillation. Hypertens Res. 2009;32(7):611-6. DOI:10.1038/hr.2009.62.

21. Chirinos J., Segers P., Rietzschel E., et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle‐aged adults: the Asklepios study. Hypertension. 2013;61:296-303. DOI:10.1161/HYPERTENSIONAHA.111.00530.

22. Shim C., Park S., Choi D., et al. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol. 2011;57(10):1226-33. DOI:10.1016/j.jacc.2010.09.067.

23. Higashi H., Okayama H., Saito M., et al. Relationship between augmentation index and left ventricular diastolic function in healthy women and men. Am J Hypertens. 2013;26(11):1280-6. DOI:10.1093/ajh/hpt115.

24. Williams B., Lacy P., Thom S., et al. for the CAFE and ASCOT investigators. Differential impact of blood pressure lowering drugs on central aortic pressure and clinical outcomes. Circulation. 2006;113:1213-25. DOI:10.1161/CIRCULATIONAHA.105.595496.

25. London G., Asmar R., O'Rourke M., et al. Mechanism (s) of selective systolic blood pressure reduction after a low-dose combination of perindopril/indapamide in hypertensive subjects: comparison with atenolol. J Am Coll Cardiol. 2004;43:92-9. DOI:10.1016/j.jacc.2003.07.039.

26. Boutouyrie P., Achouba A., Trunet .P, Laurent S. for the EXPLOR Trialist Group. Amlodipine-Valsartan Combination Decreases Central Systolic Blood Pressure More Effectively Than the AmlodipineAtenolol Combination The EXPLOR Study. Hypertension. 2010;55:1314-22. DOI:10.1161/HYPERTENSIONAHA.109.148999.

27. Goupil R., Dupuis D., Troyanov S., et al. Heart rate dependent and independent effects of beta-blockers on central hemodynamic parameters. J Hypertens. 2016;34(8):1535-43. DOI:10.1097/HJH.0000000000000978.

28. Aune E., Baekkevar M., Roislien J., et al. Normal reference ranges for left and right atrial volume indexes and ejection fractions obtained with real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009;10(6):738-44. DOI:10.1093/ejechocard/jep054.

29. Wyse D., Van Gelder I., Ellinor P., et al. Lone atrial fibrillation: does it exist? J Am Coll Cardiol. 2014;63(17):1715-23. DOI:10.1016/j.jacc.2014.01.023.

30. Kobalava Z.D., Yeshniyazov N.V., Medovchshikov V.V., Khasanova E.R. Type 2 Diabetes Mellitus and Heart Failure: Innovative Possibilities for Management of Prognosis. Kardiologiia. 2019;59(4):76- 87. (In Russ.) DOI:10.18087/cardio.2019.4.10253.

31. Rosca M., Lancellotti P., Popescu B.A., Pierard L.A. Left atrial function: pathophysiology, echocardiographic assessment, and clinical applications. Heart. 2011;97(23):1982-9. DOI:10.1136/heartjnl2011-300069.

32. Ferreira R., Worthington A., Huang C., et al. Sex differences in the prevalence of diastolic dysfunction in cardiac surgical patients. J Card Surg. 2015;30(3):238-45. DOI:10.1111/jocs.12506.

33. Proietti M., Raparelli V., Basili S., et al. Relation of female sex to left atrial diameter and cardiovascular death in atrial fibrillation: The AFFIRM Trial. Int J Cardiol. 2016;207:258-63. DOI:10.1016/j.ijcard.2016.01.169.

34. Rienstra M., Van Veldhuisen D.J., Hagens V.E., et al. Gender-Related Differences in Rhythm Control Treatment in Persistent Atrial Fibrillation. J Am Coll Cardiol. 2005;46(7):1298-306. DOI:10.1016/j.jacc.2005.05.078.

35. Friberg J., Scharling H., Gadsbøll N., et al.; Copenhagen City Heart Study. Comparison of the impact of atrial fibrillation on the risk of stroke and cardiovascular death in women versus men (The Copenhagen City Heart Study). Am J Cardiol. 2004;94(7):889-94. DOI:10.1016/j.amjcard.2004. 06.023.

36. Wagstaff A.J., Overvad T.F., Lip G.Y.H., Lane D.A. Is female sex a risk factor for stroke and thromboembolism in patients with atrial fibrillation? A systematic review and meta-analysis. QJM. 2014;107(12):955-67. DOI:10.1093/qjmed/hcu054.

37. Martin R.C., Burgin W.S., Schabath M.B., et al. Gender-Specific Differences for Risk of Disability and Death in Atrial Fibrillation-Related Stroke. Am J Cardiol. 2017;119(2):256-61. DOI:10.1016/j.amjcard.2016.09.049.

38. Delgado V., Di Biase L., Leung M., et al. Structure and Function of the Left Atrium and Left Atrial Appendage. J Am Coll Cardiol. 2017;70(25):3157-3172. DOI:10.1016/j.jacc.2017.10.063.

39. Thomas L., Abhayaratna W.P. Left Atrial Reverse Remodeling: Mechanisms, Evaluation, and Clinical Significance. JACC Cardiovasc Imaging. 2017;10(1):65-77. DOI:10.1016/j.jcmg.2016.11.003.

40. Fatema K., Barnes M.E., Bailey K.R., et al. Minimum vs. maximum left atrial volume for prediction of first atrial fibrillation or flutter in an elderly cohort: a prospective study. Eur J Echocardiogr. 2008;10(2):282-6. DOI:10.1093/ejechocard/jen235.

41. Olsen F.J., Møgelvang R., Jensen G.B., et al. Relationship Between Left Atrial Functional Measures and Incident Atrial Fibrillation in the General Population. JACC Cardiovasc Imaging. 2019;12(6):981- 9. DOI:10.1016/j.jcmg.2017.12.016.

42. Huynh Q.L., Kalam K., Iannaccone A., et al. Functional and Anatomic Responses of the Left Atrium to Change in Estimated Left Ventricular Filling Pressure. J Am Soc Echocardiogr. 2015;28(12):1428- 33. DOI:10.1016/j.echo.2015.07.028.

43. Russo C., Jin Z., Homma S., et al. Left atrial minimum volume and reservoir function as correlates of left ventricular diastolic function: impact of left ventricular systolic function. Heart. 2012;98(10):813-20. DOI:10.1136/heartjnl-2011-301388.

44. Coutinho T., Pellikka P.A., Bailey K.R., et al. Sex Differences in the Associations of Hemodynamic Load With Left Ventricular Hypertrophy and Concentric Remodeling. Am J Hypertens. 2016;29(1):73- 80. DOI:10.1093/ajh/hpv071.

45. Masugata H., Senda S., Inukai M., et al. Differences in Left Ventricular Diastolic Dysfunction between Eccentric and Concentric Left Ventricular Hypertrophy in Hypertensive Patients with Preserved Systolic Function. J Int Med Res. 2011;39(3):772-9. DOI:10.1177/147323001103900309.

46. Mizuguchi Y., Oishi Y., Miyoshi H., et al. Concentric left ventricular hypertrophy brings deterioration of systolic longitudinal, circumferential, and radial myocardial deformation in hypertensive patients with preserved left ventricular pump function. J Cardiol. 2010;55(1):23-33. DOI:10.1016/j.jjcc.2009.07.006.

47. Li Z., Wang Z., Yin Z., et al. Gender differences in fibrosis remodeling in patients with long-standing persistent atrial fibrillation. Oncotarget. 2017;8(32):53714-29. DOI:10.18632/oncotarget. 16342.

48. Thomas L., Marwick T.H., Popescu B.A., et al. Left Atrial Structure and Function, and Left Ventricular Diastolic Dysfunction. J Am Coll Cardiol. 2019;73(15):1961-77. DOI:10.1016/j.jacc.2019.01. 059.

49. Segers P., Rietzschel E.R., De Buyzere M.L., et al. Noninvasive (Input) Impedance, Pulse Wave Velocity, and Wave Reflection in Healthy Middle-Aged Men and Women. Hypertension. 2007;49(6):1248-55. DOI:10.1161/HYPERTENSIONAHA.106.085480.

50. Mitchell G.F., Parise H., Benjamin E.J., et al. Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women. Hypertension. 2004;43(6):1239-45. DOI:10.1161/01.HYP.0000128420.01881.aa.

51. Gatzka C.D., Kingwell B.A., Cameron J.D., et al. Gender differences in the timing of arterial wave reflection beyond differences in body height. J Hypertens. 2001;19(12):2197-203. DOI:10.1097/00004872-200112000-00013.

52. Torjesen A.A., Wang N., Larson M.G., et al. Forward and Backward Wave Morphology and Central Pressure Augmentation in Men and Women in the Framingham Heart Study. Hypertension. 2014;64(2):259-65. DOI:10.1161/HYPERTENSIONAHA.114.03371.

53. Yasmin, Brown M.J. Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. QJM. 1999;92(10):595-600. DOI:10.1093/qjmed/92.10.595.

54. Casey D.P., Curry T.B., Joyner M.J., et al. Acute β-Adrenergic Blockade Increases Aortic Wave Reflection in Young Men and Women. Hypertension. 2012;59(1):145-50. DOI:10.1161/HYPERTENSIONAHA.111.182337.

55. Hoshida S., Shinoda Y., Ikeoka K., et al. Age- and sex-related differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Hear Fail. 2016;3(4):270-7. DOI:10.1002/ehf2.12097.

56. Wilkinson I.B., MacCallum H., Flint L., et al. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525(1):263-70. DOI:10.1111/j.1469-7793.2000.t01-1-00263.x.

57. Kirchhof P., Benussi S., Kotecha D., et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-962. DOI:10.1093/eurheartj/ehw210.

58. Colin P, Ghaleh B, Hittinger L, et al. Differential effects of heart rate reduction and β-blockade on left ventricular relaxation during exercise. Am J Physiol Circ Physiol. 2002;282(2):H672-H679. DOI:10.1152/ajpheart.00547.2001.

59. Sardana M., Syed A.A., Hashmath Z., et al. Beta-Blocker Use Is Associated With Impaired Left Atrial Function in Hypertension. J Am Heart Assoc. 2017;6(2):pii: e005163. DOI:10.1161/JAHA.116.005163.


For citation:


Kokhan E.V., Ozova E.M., Romanova V.A., Kiyakbaev G.K., Kobalava Z.D. Left Atrial Phasic Function in Patients with Hypertension and Recurrent Atrial Fibrillation: Gender Differences of the Relationship with Diastolic Dysfunction and Central Aortic Pressure. Rational Pharmacotherapy in Cardiology. 2019;15(5):622-633. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-5-622-633

Views: 74


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)