Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Genetic, Epigenetic and Transcription Factors in Atrial Fibrillation

https://doi.org/10.20996/1819-6446-2019-15-3-407-415

Full Text:

Abstract

Atrial fibrillation (AF) is one of the most common arrhythmia that occurs in patients with cardiovascular diseases. Congenital forms of AF are quite rare. Many studies have shown that genetic, epigenetic and transcription factors may play an important role in the development and the progression of AF. In our review, studies have been conducted on the identification of mutations in ionic and non-ionic channels, possibly associated with AF. These mutations were found only in isolated groups of patients with AF, and in general, monogenic forms of AF are a rare subtype of the disease. Genomic association studies have helped to identify potential links between single nucleotide polymorphisms and AF. The risk of AF in the general population is likely to be determined by the interaction between environmental factors and many alleles. In recent years, the emergence of a genome-wide associative studies has significantly expanded the understanding of the genetic basis for the inheritance of AF and has led to the emergence of new evidence of the important role of genetic factors in the development of AF, in the risk stratification of AF and the recurrence of AF. Epigenetic factors are also important in AF. Epigenetic therapy aimed at treating a disease through exposure to epigenome is currently under development. A newly emerged area of ablatogenomics includes the use of genetic profiles that allow assessing the likelihood of recurrence of AF after catheter ablation. The results of genetic studies in AF show that, in addition to their role in the appearance of congenital heart pathologies, transcription factors play an important role in the pathogenesis of AF.

About the Authors

O. V. Sapelnikov
National Medical Research Center of Cardiology
Russian Federation

MD, PhD, Researcher, Department of Cardiovascular Surgery

Tretya Cherepkovskaya ul. 15а, Moscow, 121552 Russia



A. A. Kulikov
National Medical Research Center of Cardiology
Russian Federation

Junior Researcher, Department of Cardiovascular Surgery

Tretya Cherepkovskaya ul. 15а, Moscow, 121552 Russia



O. O. Favorova
National Medical Research Center of Cardiology Pirogov Russian National Research Medical University
Russian Federation

PhD (Biology), Professor, Head of Laboratory of Functional Genomics of Cardiovascular Diseases; Head of Chair of Molecular Biology and Medical Biotechnology

Tretya Cherepkovskaya ul. 15а, Moscow, 121552 Russia

Ostrovitianova ul. 1, Moscow, 117997 Russia



N. A. Matveeva
National Medical Research Center of Cardiology Pirogov Russian National Research Medical University
Russian Federation

PhD (Biology), Researcher, Laboratory of Functional Genomics of Cardiovascular Diseases; Researcher, Chair of Molecular Biology and Medical Biotechnology

Tretya Cherepkovskaya ul. 15а, Moscow, 121552 Russia

Ostrovitianova ul. 1, Moscow, 117997 Russia



D. I. Cherkashin
National Medical Research Center of Cardiology
Russian Federation

MD, PhD, Cardiovascular Surgeon, Department of Cardiovascular Surgery

Tretya Cherepkovskaya ul. 15а, Moscow, 121552 Russia



O. A. Nikolaeva
National Medical Research Center of Cardiology
Russian Federation

Junior Researcher, Laboratory of Surgical and X-ray Surgery for the Treatment of Cardiac Arrhythmias, Department of Cardiovascular Surgery

Tretya Cherepkovskaya ul. 15а, Moscow, 121552 Russia



R. S. Akchurin
National Medical Research Center of Cardiology
Russian Federation

MD, PhD, Professor, Academician of the Russian Academy of Sciences, Head of Department of Cardiovascular Surgery, Deputy General Director for Surgery

Tretya Cherepkovskaya ul. 15а, Moscow, 121552 Russia



References

1. Wolff L. Familial auricular fibrillation. N Engl J Med. 1943;229:396-7.

2. Chen Y.H., Xu S.J., Bendahhou S., et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251-4. DOI:10.1126/science.1077771.

3. Yang Y., Xia M., Jin Q., et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75(5):899-905. DOI:10.1086/425342.

4. Hong K., Bjerregaard P., Gussak I., Brugada R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005;16(4):394-6. DOI:10.1046/j.1540-8167.2005.40621.x.

5. Xia M., Jin Q., Bendahhou S., et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005;332(4):1012-9. DOI:10.1016/j.bbrc.2005.05.054.

6. Olson T.M., Alekseev A.E., Liu X.K., et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15(14):2185-91. DOI:10.1093/hmg/ddl143.

7. Otway R., Vandenberg J.I., Guo G., et al. Stretch-sensitive KCNQ1 mutation A link between genetic and environmental factors in the pathogenesis of atrial fibrillation? J Am Coll Cardiol. 2007;49(5):578-86. DOI:10.1016/j.jacc.2006.09.044.

8. Gollob M.H., Jones D.L., Krahn A.D., et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354(25):2677-88. DOI:10.1056/NEJMoa052800.

9. Zhang X., Chen S., Yoo S., et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell. 2008;135(6):1017-27. DOI:10.1016/j.cell.2008.10.022.

10. Hodgson-Zingman D.M., Karst M.L., Zingman L.V., et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008;359(2):158-65. DOI:10.1056/ NEJMoa0706300.

11. Ellinor P.T., Petrov-Kondratov V.I., Zakharova E., et al. Potassium channel gene mutations rarely cause atrial fibrillation. BMC Med Genet. 2006;7:70. DOI:10.1186/1471-2350-7-70.

12. Fox C.S., Parise H., D'Agostino R.B., et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA. 2004;291(23):2851-5. DOI:10.1001/jama.291.23.2851.

13. Arnar D.O., Thorvaldsson S., Manolio T.A., et al. Familial aggregation of atrial fibrillation in Iceland. Eur Heart J. 2006;27(6):708-12. DOI:10.1093/eurheartj/ehi727.

14. Ellinor P.T., Yoerger D.M., Ruskin J.N., MacRae C.A. Familial aggregation in lone atrial fibrillation. Hum Genet. 2005;118(2):179-84. DOI:10.1007/s00439-005-0034-8.

15. Darbar D., Herron K.J., Ballew J.D., et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol. 2003;41(12):2185-92. DOI:10.1016/S0735-1097(03)00465-0.

16. Chen L.Y., Ballew J.D., Herron K.J., et al. A common polymorphism in SCN5A is associated with lone atrial fibrillation. Clin Pharmacol Ther. 2007;81(1):35-41. DOI:10.1038/sj.clpt.6100016.

17. Fatini C., Sticchi E., Genuardi M., et al. Analysis of minK and eNOS genes as candidate loci for predisposition to nonvalvular atrial fibrillation. Eur Heart J. 2006;27(14):1712-8. DOI:10.1093/eurheartj/ehl087.

18. Sinner M.F., Pfeufer A., Akyol M., et al. The non-synonymous coding IKr-channel variant KCNH2-K897T is associated with atrial fibrillation: results from a systematic candidate gene-based analysis of KCNH2 (HERG). Eur Heart J. 2008;29(7):907-14. DOI:10.1093/eurheartj/ehm619.

19. Lai L.P., Su M.J., Yeh H.M., et al. Association of the human minK gene 38G allele with atrial fibrillation: evidence of possible genetic control on the pathogenesis of atrial fibrillation. Am Heart J. 2002;144(3):485-90. DOI:10.1067/mhj.2002.123573.

20. Ravn L.S., Hofman-Bang J., Dixen U., et al. Relation of 97T polymorphism in KCNE5 to risk of atrial fibrillation. Am J Cardiol. 2005;96(3):405-7. DOI:10.1016/j.amjcard.2005.03.086.

21. Schreieck J., Dostal S., von Beckerath N., et al. C825T polymorphism of the G-protein beta3 subunit gene and atrial fibrillation: association of the TT genotype with a reduced risk for atrial fibrillation. Am Heart J. 2004;148(3):545-50. DOI:10.1016/j.ahj.2004.03.024.

22. Juang J.M., Chern Y.R., Tsai C.T., et al. The association of human connexin 40 genetic polymorphisms with atrial fibrillation. Int J Cardiol. 2007;116(1):107-12. DOI:10.1016/j.ijcard.2006.03.037.

23. Firouzi M., Ramanna H., Kok B., et al. Association of human connexin40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circ Res. 2004;95(4):e29-33. DOI:10.1161/01.RES.0000141134.64811.0a.

24. Gudbjartsson D.F., Arnar D.O., Helgadottir A., et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448(7151):353-7. DOI:10.1038/nature06007.

25. Gudbjartsson D.F., Holm H., Gretarsdottir S., et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41(8):876-8. DOI:10.1038/ng.417.

26. Benjamin E.J., Rice K.M., Arking D.E., et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41(8):879-81. DOI:10.1038/ng.416.

27. Ellinor P.T., Lunetta K.L., Glazer N.L., et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42(3):240-4. DOI:10.1038/ng.537.

28. Pfeufer A., van Noord C., Marciante K.D., et al. Genome-wide association study of PR interval. Nat Genet. 2010;42(2):153-9. DOI:10.1038/ng.517.

29. Christophersen I.E., Ravn L.S., Budtz-Joergensen E., et al. Familial aggregation of atrial fibrillation: a study in Danish twins. Circ Arrhythm Electrophysiol. 2009;2(4):378-83. DOI:10.1161/CIRCEP.108.786665.

30. Brugada R., Tapscott T., Czernuszewicz G.Z., et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med. 1997;336(13):905-11. DOI:10.1056/NEJM199703273361302.

31. Ellinor P.T., Shin J.T., Moore R.K., et al. Locus for atrial fibrillation maps to chromosome 6q14-16. Circulation. 2003;107(23):2880-3. DOI:10.1161/01.CIR.0000077910.80718.49.

32. Das S., Makino S., Melman Y.F., et al. Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation. Heart Rhythm. 2009;6(8):1146-53. DOI:10.1016/j.hrthm.2009.04.015.

33. Hong K., Piper D.R., Diaz-Valdecantos A., et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res. 2005;68(3):433-40. DOI:10.1016/j.cardiores.2005.06.023.

34. Olson T.M., Michels V.V., Ballew J.D., et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. J Am Med Assoc. 2005;293(4):447-54. DOI:10.1001/jama.293.4.447.

35. Zhang X., Yang H., Corydon M.J., et al. Localization of a human nucleoporin 155 gene (NUP155) to the 5p13 region and cloning of its cDNA. Genomics. 1999;57(1):144-51. DOI:10.1006/geno.1999.5741.

36. Ravn L.S., Aizawa Y., Pollevick G.D., et al. Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm. 2008;5(3):427-35. DOI:10.1016/j.hrthm.2007.12.019.

37. Zobel C., Cho H.C., Nguyen T.T., et al. Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: evidence for heteromeric co-assembly of Kir2.1 and Kir2.2. J Physiol. 2003;550(Pt 2):365-72. DOI:10.1113/jphysiol.2002.036400.

38. Lopatin A.N., Nichols C.G. Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol. 2001;33(4):625-38. DOI:10.1006/jmcc.2001.1344.

39. Tamkun M.M., Knoth K.M., Walbridge J.A., et al. Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J. 1991;5(3):331-7. DOI:10.1096/fasebj.5.3.2001794.

40. Wang Z., Fermini B., Nattel S. Delayed rectifier outward current and repolarization in human atrial myocytes. Circ Res. 1993;73(2):276-85.

41. Simard C., Drolet B., Yang P., et al. Polymorphism screening in the cardiac K+ channel gene KCNA5. Clin Pharmacol Ther. 2005;77(3):138-44. DOI:10.1016/j.clpt.2004.10.008.

42. Kanno S., Saffitz J.E. The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovasc Pathol. 2001;10(4):169-77. DOI:10.1016/S1054-8807(01)00078-3.

43. Ellinor P.T., Nam E.G., Shea M.A., et al. Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm. 2008;5(1):99-105. DOI:10.1016/j.hrthm.2007.09.015.

44. Makiyama T., Akao M., Shizuta S., et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 2008;52(16):1326-34. DOI:10.1016/j.jacc.2008.07.013.

45. Watanabe H., Darbar D., Kaiser D.W., et al. Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2(3):268-75. DOI:10.1161/CIRCEP.108.779181.

46. Moe G.K. Evidence for reentry as a mechanism of cardiac arrhythmias. Rev Physiol Biochem Pharmacol. 1975;72:55-81.

47. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415(6868):219-26. DOI:10.1038/415219a.

48. Ehrlich J.R., Zicha S., Coutu P., et al. Atrial fibrillation-associated minK38G/S polymorphism modulates delayed rectifier current and membrane localization. Cardiovasc Res. 2005;67(3):520-8. DOI:10.1016/j.cardiores.2005.03.007.

49. Allessie M.A. Is atrial fibrillation sometimes a genetic disease? N Engl J Med. 1997;336(13):950-2. DOI:10.1056/NEJM199703273361310.

50. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005; 437(7063):1299-320. DOI:10.1038/nature04226.

51. Milan D.J., Lubitz S.A., Kääb S., Ellinor P.T. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice. Heart Rhythm. 2010;7(8):1141-8. DOI:10.1016/j.hrthm.2010.04.021.

52. Roberts J.D., Gollob M.H. Impact of genetic discoveries on the classification of lone atrial fibrillation. J Am Coll Cardiol. 2010;55(8):705-12. DOI:10.1016/j.jacc.2009.12.005.

53. Nyberg M.T., Stoevring B., Behr E.R., et al. The variation of the sarcolipin gene (SLN) in atrial fibrillation, long QT syndrome and sudden arrhythmic death syndrome. Clin Chim Acta. 2007;375(1-2):87-91. DOI:10.1016/j.cca.2006.06.020.

54. Bedi M., McNamara D., London B., Schwartzman D. Genetic susceptibility to atrial fibrillation in patients with congestive heart failure. Heart Rhythm. 2006;3(7):808-12. DOI:10.1016/j.hrthm.2006.03.002.

55. Ravn L.S., Benn M., Nordestgaard B.G., et al. Angiotensinogen and ACE gene polymorphisms and risk of atrial fibrillation in the general population. Pharmacogenet Genomics. 2008;18(6):525-33. DOI:10.1097/FPC.0b013e3282fce3bd.

56. Fatini C., Sticchi E., Gensini F., et al. Lone and secondary nonvalvular atrial fibrillation: role of a genetic susceptibility. Int J Cardiol. 2007;120(1):59-65. DOI:10.1016/j.ijcard.2006.08.079.

57. Kato K., Oguri M., Hibino T., et al. Genetic factors for lone atrial fibrillation. Int J Mol Med. 2007;19(6):933-9. DOI:10.3892/ijmm.19.6.933.

58. Gaudino M., Andreotti F., Zamparelli R., et al. The -174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation. 2003;108 Suppl 1:II195-9. DOI:10.1161/01.cir.0000087441.48566.0d.

59. Tsai C.T., Lai L.P., Lin J.L., et al. Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation. 2004;109(13):1640-6. DOI:10.1161/01.CIR.0000124487.36586.26.

60. Kääb S., Darbar D., van Noord., et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009;30(7):813-9. DOI:10.1093/eurheartj/ehn578.

61. Shi L., Li C., Wang C., et al. Assessment of association of rs2200733 on chromosome 4q25 with atrial fibrillation and ischemic stroke in a Chinese Han population. Hum Genet. 2009;126(6):843-9. DOI:10.1007/s00439-009-0737-3.

62. Lubitz S.A., Ozcan C., Magnani J.W., et al. Genetics of atrial fibrillation: implications for future research directions and personalized medicine. Circ Arrhythm Electrophysiol. 2010;3(3):291-9. DOI:10.1161/CIRCEP.110.942441

63. Ng S.B., Buckingham K.J., Lee C., et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30-35. DOI:10.1038/ng.499.

64. Yamada Y., Sakuma J., Takeuchi I., et al. Identification of TNFSF13, SPATC1L, SLC22A25 and SALL4 as novel susceptibility loci for atrial fibrillation by an exome-wide association study. Mol Med Rep. 2017;16(5):5823-32. DOI:10.3892/mmr.2017.7334.

65. Husser D., Adams V., Piorkowski C., et al. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. 2010; 55:747-53. DOI:10.1016/j.jacc.2009.11.041.

66. Shoemaker M.B., Bollmann A., Lubitz S.A., et al. Common genetic variants and response to atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2015;8:296-302. DOI:10.1161/CIRCEP.114.001909.

67. Tada H., Shiffman D., Smith J.G., et al. Twelve-single nucleotide polymorphism genetic risk score identifies individuals at increased risk for future atrial fibrillation and stroke. Stroke. 2014;45:2856-62. DOI:10.1161/STROKEAHA.114.006072.

68. Hayashi K., Tada H., Yamagishi M., et al. The genetics of atrial fibrillation. Curr Opin Cardiol. 2017;32:10-6. DOI:10.1097/HCO.0000000000000356.

69. Gay M.S., Li Y., Xiong F., et al. Dexamethasone treatment of newborn rats decreases cardiomyocyte endowment in the developing heart through epigenetic modifications. PloS One. 2015;10:e0125033. DOI:10.1371/journal.pone.0125033.

70. Koutsis G., Siasos G., Spengos K. The emerging role of microRNA in stroke. Curr Top Med Chem. 2013;13:1573-88. DOI:10.2174/15680266113139990106.

71. Nattel S., Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63:2335-45. DOI:10.1016/j.jacc.2014.02.555.

72. Tao H., Yang J.J., Shi K.H., et al. DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology. 2014;323:125-9.

73. Tao H., Yang J.J., Chen Z.W., et al. DNMT3A silencing RASSF1A promotescardiac fibrosis through upregulation of ERK1/2. Toxicology. 2014;323:42-50. DOI:10.1016/j.tox.2014.06.006.

74. Choi S.Y., Ryu Y., Kee H.J., et al. Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul Pharmacol. 2015;72:130-40. DOI:10.1016/j.vph.2015.04.006.

75. Zwergel C., Valente S., Jacob C., Mai A. Emerging approaches for histonedeacetylase inhibitor drug discovery. Expert Opin Drug Discov 2015;10:1-15. DOI:10.1517/17460441.2015.1038236.

76. Molden R.C., Bhanu N.V., Le Roy G., et al. Multi-faceted quantitative proteomics analysis of histone H2B isoforms and their modifications. Epigenetics Chromatin. 2015;8:15. DOI:10.1186/s13072-015-0006-8.

77. Muthurajan U.M., Hepler M.R., Hieb A.R., et al. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proc Natl Acad Sci USA. 2014;111:12752-7. DOI:10.1073/pnas.1405005111.

78. Jalife J., Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 2014;25:475-84. DOI:10.1016/j.tcm.2014.12.015.

79. Nattel S., Burstein B., Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 2008;1:62-73. DOI:10.1161/CIRCEP.107.754564.

80. Wakili R., Voigt N., Kaab S., et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121:2955-68. DOI:10.1172/JCI46315.

81. Natale A., Raviele A., Arentz T., et al. Venice chart international consensus document on atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2007;18:560-80. DOI:10.1111/j.1540-8167.2007.00816.x.

82. Mahida S. Transcription factors and atrial fibrillation. Cardiovasc Res. 2014;101:194-202. DOI:10.1093/cvr/cvt261.

83. Roberts J.D., Marcus G.M. The burgeoning field of ablatogenomics. Circ Arrhythm Electrophysiol. 2015;8:258-60. DOI:10.1161/CIRCEP.115.002890.

84. Husser D., Adams V., Piorkowski C., et al. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. Jam Coll Cardiol. 2010;55:747-53.


For citation:


Sapelnikov O.V., Kulikov A.A., Favorova O.O., Matveeva N.A., Cherkashin D.I., Nikolaeva O.A., Akchurin R.S. Genetic, Epigenetic and Transcription Factors in Atrial Fibrillation. Rational Pharmacotherapy in Cardiology. 2019;15(3):407-415. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-3-407-415

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)