Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Multi-Ethnic Analysis of Cardiac Pharmacogenetic Markers of Cytochrome P450 and Membrane Transporters Genes in the Russian Population

https://doi.org/10.20996/1819-6446-2019-15-3-393-406

Full Text:

Abstract

Aim. To summarize Russian studies using pharmacogenetic testing as applied to cardiology.
Material and methods. The authors conducted an online search for articles in December 2018 using the following databases: PubMed, Google Scholar, eLIBRARY. The search was carried out by keywords: "Russia", "Russian", "cardiology" together with the terms associated with the polymorphic marker, including: «P450», «CYP2C19», «CYP2D6», «CYP2B1», «CYP2B6», «CYP2Е1», «CYP2C8», «CYP2C9», «CYP3A4», «CYP3A5», «CYP1A1», «CYP1A2», «CYP4F2», «CYP4F1», «ABCB1», «SLCO1B1», «VKORC1», «GGCX», «SULT1A1», «CULT1», «CES1», «gene», «genes», «pharmacogenetics», «pharmacogenomics», «ethnic group».
Results. Generalization of information allowed to identify obscure genes that need to be investigated in pharmacogenetic studies. This information can be used for the development of dosing algorithms and the priority choice of drugs, considering the results of pharmacogenetic testing and planning future research.
Conclusion. The results of the literature review indicate the importance of studying the most clinically valid and clinically useful pharmacogenetic markers (CYP2C19, CYP2C9, VKORC1, SLCO1B1) among various ethnic groups in the Russian Federation. With the accumulation of evidence of clinical validity and clinical utility of other pharmacogenetic markers (CES1, CYP2D6*4, etc.), the problem of interethnic differences in the carriage of clinically significant polymorphisms of these genes identified in previous studies in the Russian Federation increasingly requires attention. The most promising for the introduction into the clinical practice in the Russian Federation in the near future are polymorphic markers of the CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes.

About the Authors

K. B. Mirzaev
Russian Medical Academy of Continuing Professional Education
Russian Federation

MD, PhD, Senior Researcher, Research Center

 Barrikadnaya ul. 2, Moscow, 123242 Russia



D. S. Fedorinov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Student, International School "Medicine of the Future", Biomedical Science and Technology Park

Trubetskaya ul. 8-2, Moscow, 119991 Russia



D. V. Ivashchenko
Russian Medical Academy of Continuing Professional Education
Russian Federation

MD, PhD, Researcher, Department of Personalized Medicine, Research Institute of Molecular and Personalized Medicine; Assistant, Department of Child Psychiatry and Psychotherapy

 Barrikadnaya ul. 2, Moscow, 123242 Russia



D. A. Sychev
Russian Medical Academy of Continuing Professional Education
Russian Federation

MD, PhD, Professor, Corresponding Member of the Russian Academy of Sciences, Head of Chair of Clinical Pharmacology and Therapy, Rector

 Barrikadnaya ul. 2, Moscow, 123242 Russia



References

1. Order of the Ministry of Health of the Russian Federation of April 24, 2018 N 186 “On approval of the Concept of predictive, preventive and personalized medicine”. [cited by May 18, 2019]. Available from: www.garant.ru/products/ipo/prime/doc/71847662. (In Russ.)

2. GKS. All-Russian population census 2010. The national composition of the population of Russia 2010. [cited by May 18, 2019]. Available from: www.gks.ru/free_doc/new_site/perepis2010/croc/perepis_itogi1612.htm. (In Russ.)

3. Ferranti J., Horvath M., Cozart H., et al. A Multifaceted Approach to Safety. Journal of Patient Safety. 2008;4(3):184-90. DOI:10.1097/PTS.0b013e318184a9d5.

4. Pirmohamed M., Park B. Adverse drug reactions: back to the future. British Journal of Clinical Pharmacology. 2003;55(5):486-92. DOI:10.1046/j.1365-2125.2003.01847.x.

5. Jha A., Kuperman G., Teich J., et al. Identifying Adverse Drug Events: Development of a Computerbased Monitor and Comparison with Chart Review and Stimulated Voluntary Report. Journal of the American Medical Informatics Association. 1998;5(3):305-14. DOI:10.1136/jamia.1998.0050305.

6. PHARMGKB. CYP2C9 frequency table. [cited by May 18, 2019]. Available from: https://api.pharmgkb.org/v1/download/file/attachment/CYP2C9_frequency_table.xlsx.

7. Miners J., Birkett D. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. British Journal of Clinical Pharmacology. 1998;45(6):525-38. DOI:10.1046/j.1365-2125.1998.00721.x.

8. Steward D., Haining R., Henne K., et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics. 1997;7(5):361-367. DOI:10.1097/00008571-199710000-00004.

9. Kirchheiner J., Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clinical Pharmacology & Therapeutics. 2005;77(1):1-16. DOI:10.1016/j.clpt.2004.08.009.

10. Barysheva V., Ketova G. Analysis of the prevalence of genotypes according to Pharmacogenetic testing. Modern problems of science and education. 2016; 4. (In Russ.)

11. Ivashchenko D., Rusin I., Sychev D., et al. The Frequency of CYP2C9, VKORC1, and CYP4F2 Polymorphisms in Russian Patients With High Thrombotic Risk. Medicina (Kaunas). 2013;49(12):81. DOI:10.3390/medicina49120081.

12. Pchelina S., Sirotkina O., Taraskina A., et al. The frequency of cytochrome P450 2C9 genetic variants in the Russian population and their associations with individual sensitivity to warfarin therapy. Thrombosis Research. 2004;115(3):199-203. DOI:10.1016/j.thromres.2004.08.020.

13. Baturin V., Tsarukyan A., Kolodijchuk E. Study of CYP2C9 gene polymorphism in ethnic groups of the population of Stavropol region. Medical news of the North Caucasus. 2014;9(1):45-8. (In Russ.) DOI:10.14300/mnnc.2014.09013.

14. Sychev D., Rozhkov A., Ananichuk A., et al. Evaluation of genotype-guided acenocoumarol dosing algorithms in Russian patients. Drug Metabolism and Personalized Therapy. 2017;32(2):109-14. DOI:10.1515/dmpt-2016-0043.

15. Makeeva O., Stepanov V., Puzyrev V., et al. Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes. Pharmacogenomics. 2008;9(7):847-68. DOI:10.2217/14622416.9.7.847.

16. Gra O., Mityaeva O., Berdichevets I., et al. Microarray-Based Detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 Allele Frequencies in Native Russians. Genetic Testing and Molecular Biomarkers. 2010;14(3):329-42. DOI:10.1089/gtmb.2009.0158.

17. Gaikovitch E., Cascorbi I., Mrozikiewicz P., et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. European Journal of Clinical Pharmacology. 2003;59(4):303-12. DOI:10.1007/s00228-003-0606-2.

18. Gra O., Glotov A., Nikitin E., et al. Polymorphisms in xenobiotic-metabolizing genes and the risk of chronic lymphocytic leukemia and non-Hodgkin's lymphoma in adult Russian patients. American Journal of Hematology. 2008;83(4):279-87. DOI:10.1002/ajh.21113.

19. Korytina G., Kochetova O., Akhmadishina L., et al. Polymorphisms of cytochrome P450 genes in three ethnic groups from Russia. Balkan Medical Journal. 2012;8(2):252-60. DOI: 10.5152/balkanmedj.2012.039.

20. Vasilyev F., Danilova D., Kaimonov V., et al. Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population. Research in Pharmaceutical Sciences. 2016;11(3):259-64.

21. Romodanovsky D., Khapaev B., Ignatiev I., et al. Frequencies the «slow» allele variants of the genes coding isoenzymes of cytochrome Р450 CYP2D6, CYP2C19, CYP2C9 in Karachaevs and Circassians. Biomedicine. 2010;2:33-7. (In Russ.)

22. Mirzaev K., Sychev D., Ryzhikova K., et al. Genetic Polymorphisms of Cytochrome P450 Enzymes and Transport Proteins in a Russian Population and Three Ethnic Groups of Dagestan. Genetic Testing and Molecular Biomarkers. 2017;21(12):747-53. DOI:10.1089/gtmb.2017.0036.

23. Sychev D., Shuev G., Suleymanov S., et al. Comparison of CYP2C9, CYP2C19, CYP2D6, ABCB1, and SLCO1B1 gene-polymorphism frequency in Russian and Nanai populations. Pharmacogenomics and Personalized Medicine. 2017;10:93-9. DOI:10.2147/PGPM.S129665.

24. Polonikov A., Kharchenko A., Bykanova M., et al. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. Gene. 2017;627:451-9. DOI:10.1016/j.gene.2017.07.004.

25. Polonikov A., Bykanova M., Ponomarenko I., et al. The contribution of CYP2C gene subfamily involved in epoxygenase pathway of arachidonic acids metabolism to hypertension susceptibility in Russian population. Clinical and Experimental Hypertension. 2017;39(4):306-11. DOI:10.1080/10641963.2016.1246562.

26. Cain D., Hutson S., Wallin R. Assembly of the Warfarin-sensitive Vitamin K 2,3-Epoxide Reductase Enzyme Complex in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry. 1997;272(46):29068-75. DOI:10.1074/jbc.272.46.29068.

27. Liang R., Li L., Li C., et al. Impact of CYP2C9*3, VKORC1-1639, CYP4F2rs2108622 genetic polymorphism and clinical factors on warfarin maintenance dose in Han-Chinese patients. Journal of Thrombosis and Thrombolysis. 2012;34(1):120-5. DOI:10.1007/s11239-012-0725-7.

28. Sim S., Risinger C., Dahl M., et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clinical Pharmacology and Therapeutics. 2006;79(1):103-13. DOI:10.1016/j.clpt.2005.10.002.

29. PHARMGKB. CYP2C19 frequency table. [cited by May 18, 2019]. Available from: https://api.pharmgkb.org/v1/download/file/attachment/CYP2C19_frequency_table.xlsx.

30. Yasumori T., Nagata K., Yang S., et al. Cytochrome P450 mediated metabolism of diazepam in human and rat: involvement of human CYP2C in N-demethylation in the substrate concentrationdependent manner. Pharmacogenetics. 1993;3(6):291-301. DOI:10.1097/00008571-199312000-00003.

31. Brøsen K. Some Aspects of Genetic Polymorphism in the Biotransformation of Antidepressants. Thérapie. 2004;59(1):5-12. DOI:10.2515/therapie:2004003.

32. Li X. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metabolism and Disposition. 2004;32(8):821-7. DOI:10.1124/dmd.32.8.821.

33. Hulot J. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108(7):2244-7. DOI:10.1182/blood-2006-04-013052.

34. Swen J., Nijenhuis M., de Boer A., et al. Pharmacogenetics: From Bench to Byte— An Update of Guidelines. Clinical Pharmacology and Therapeutics. 2011;89(5):662-73. DOI:10.1038/clpt.2011.34.

35. Clopidogrel. Registration certificate LSR-009024/10. [cited by May 18, 2019]. Available from: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=8aa824fd-fb42-4544-accf-119ea1c4b289&t=. (In Russ.)

36. Bockeria O., Kudzoeva Z., Shvarts V., et al. The possibility of selecting optimal antiplatelet therapy in patients with coronary heart disease in terms of CYP2C19 polymorphism. Ter Arkhiv. 2016;88(5):47-54 (In Russ.) DOI:10.17116/terarkh201688547-54.

37. Golukhova E., Ryabinina M., Bulaeva N., et al. Clopidogrel Response Variability. American Journal of Therapeutics. 2015;22(3):222-30. DOI: 10.1097/MJT.0000000000000125.

38. Golukhova E., Grigoryan M., Ryabinina M., et al. Body Mass Index and Plasma P-Selectin before Coronary Stenting Predict High Residual Platelet Reactivity at 6 Months on Dual Antiplatelet Therapy. Cardiology. 2018;139(2):132-6. DOI:10.1159/000485555.

39. Muslimova E., Afanasiev S., Rebrova T., et al. Association of ITGB3, P2RY12, and CYP2C19 gene polymorphisms with platelet functional activity in patients with coronary heart disease during dual antiplatelet therapy. Ter Arkhiv. 2017;89(5):74-8. (In Russ.) DOI:10.17116/terarkh201789574-78.

40. Fedorinov D., Mirzaev K., Ivashchenko D., et al. Pharmacogenetic testing by polymorphic markers 681G>A and 636G>A CYP2C19 gene in patients with acute coronary syndrome and gastric ulcer in the Republic of Sakha (Yakutia). Drug Metabolism and Personalized Therapy. 2018;33(2):91-8. DOI:10.1515/dmpt-2018-0004.

41. Mirzaev K., Zelenskaya E., Barbarash O., et al. CYP2C19 polymorphism frequency in Russian patients in Central Russia and Siberia with acute coronary syndrome. Pharmacogenomics and Personalized Medicine. 2017;10:107-14. DOI:10.2147/PGPM.S126305.

42. Khalikova A., Arkhipova A., Ahmetov I., et al. The study of cytochrome P-450 CYP2C19 gene polymorphisms in population of Tatars living in Republic of Tatarstan. Practical Medicine. 2012;3(58):53-5. (In Russ.).

43. Denisenko N., Sychev D., Sizova Z., et al. The frequency of CYP2C19 genetic polymorphisms in Russian patients with peptic ulcers treated with proton pump inhibitors. Pharmacogenomics and Personalized Medicine. 2015;8:111-4. DOI:10.2147/PGPM.S78986.

44. Denisenko N., Sychev D., Sizova Z., et al. Urine metabolic ratio of omeprazole in relation to CYP2C19 polymorphisms in Russian peptic ulcer patients. Pharmacogenomics and Personalized Medicine. 2017;10:253-9. DOI:10.2147/PGPM.S141935.

45. Owen R., Sangkuhl K., Klein T., et al. Cytochrome P450 2D6. Pharmacogenetics and Genomics. 2009;19(7):559-62. DOI:10.1097/FPC.0b013e32832e0e97.

46. Transon C., Leemann T., Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. European Journal of Clinical Pharmacology. 1996;50(3):209-15. DOI:10.1007/s002280050094.

47. Gardiner S. Pharmacogenetics, Drug-Metabolizing Enzymes, and Clinical Practice. Pharmacological Reviews. 2006;58(3):521-90. DOI:10.1124/pr.58.3.6.

48. Ingelman-Sundberg M., Sim S., Gomez A., et al. Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacology & Therapeutics. 2007;116(3):496-526. DOI:10.1016/j.pharmthera.2007.09.004.

49. PHARMGKB. CYP2D6 frequencies table. [cited by May 18, 2019]. Available from: https://api.pharmgkb.org/v1/download/file/attachment/CYP2D6_frequencies.xlsx.

50. Duzhak T., Mitrofanov D., Ostashevskii V., et al. Genetic polymorphisms of CYP2D6, CYP1A1, GSTM1 and p53 genes in a unique Siberian population of Tundra Nentsi. Pharmacogenetics. 2000;10(6):531-7. DOI:10.1097/00008571-200008000-00006.

51. Polonikov A., Ivanov V., Solodilova M. Genetic variation of genes for xenobiotic-metabolizing enzymes and risk of bronchial asthma: the importance of gene-gene and gene-environment interactions for disease susceptibility. Journal of Human Genetics. 2009;54(8):440-9. DOI:10.1038/jhg.2009.58.

52. Goryachkina K., Burbello A., Boldueva S., et al. Inhibition of metoprolol metabolism and potentiation of its effects by paroxetine in routinely treated patients with acute myocardial infarction (AMI). European Journal of Clinical Pharmacology. 2007;64(3):275-82. DOI:10.1007/s00228-007-0404-3.

53. Tiili E., Antikainen M., Mitiushkina N., et al. Effect of genotype and methylation of CYP2D6 on smoking behaviour. Pharmacogenetics and Genomics. 2015;25(11):531-40. DOI:10.1097/FPC.0000000000000166.

54. Goryachkina K., Burbello A., Boldueva S., et al. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. European Journal of Clinical Pharmacology. 2008;64(12):1163-73. DOI:10.1007/s00228-008-0525-3.

55. Fedorinov D., Mirzaev K., Mustafina V., et al. Pharmacogenetic testing by polymorphic markers G1846A (CYP2D6*4) and C100T (CYP2D6*10) of the CYP2D6 gene in coronary heart disease patients taking β-blockers in the Republic of Sakha (YAKUTIA). Drug Metabolism and Personalized Therapy. 2018;33(4):195-200. DOI:10.1515/dmpt-2018-0015.

56. Zateyshchikov D., Minushkina L., Brovkin A., et al. Association of CYP2D6 and ADRB1 genes with hypotensive and antichronotropic action of betaxolol in patients with arterial hypertension. Fundamental & Clinical Pharmacology. 2007;21(4):437-43. DOI:10.1111/j.1472-8206.2007.00518.x.

57. Totah R., Rettie A. Cytochrome P450 2C8: Substrates, inhibitors, pharmacogenetics, and clinical relevance. Clinical Pharmacology & Therapeutics. 2005;77(5):341-52. DOI:10.1016/j.clpt.2004.12.267.

58. Bahadur N., Leathart J., Mutch E., et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochemical Pharmacology. 2002;64(11):1579-89. DOI:10.1016/S0006-2952(02)01354-0.

59. Kurdyukov I., Shmurak V., Nadeyev A., et al. «Esterase status» of the organism at exposure to toxic substances and pharmaceutical preparations. Toxicological Review. 2012;6(2):6-13. (In Russ).

60. Abdullaev S., Mirzaev K., Mammaev S., et al. The prevalence of the polymorphic marker rs2244613 of the CES1 gene associated with a lower risk of bleeding in patients using dabigatran in Russians and in the three ethnic groups of the Republic of Dagestan. Clinical Pharmacology and Therapy. 2018;27(4):87-90 (In Russ.)

61. Sychev D., Levanov A., Shelekhova T., et al. The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty. Pharmacogenomics and Personalized Medicine. 2018;11:127-37. DOI:10.2147/PGPM.S169277.

62. Mirzaev K., Osipova D., Kitaeva E. et al. The effect of CES1 gene polymorphism on the antiplatelet effect of the clopidogrel receptor P2Y12 blocker. Clinical Pharmacology and Therapy. 2008;27(5):87-90 (In Russ.)

63. Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1). Drug Discovery Today. 2007;12(19-20):838-43. DOI:10.1016/j.drudis.2007.07.021.

64. Fung K., Gottesman M. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2009;1794(5):860-71. DOI:10.1016/j.bbapap.2009.02.014.

65. Sychev D., Shikh N., Morozova T., et al. Effects of ABCB1 rs1045642 polymorphisms on the efficacy and safety of amlodipine therapy in Caucasian patients with stage I-II hypertension. Pharmacogenomics and Personalized Medicine. 2018;11:157-65. DOI:10.2147/PGPM.S158401.

66. Rozhkov A., Sychev D., Kazakov R. ABCB1 polymorphism and acenocoumarol safety in patients with valvular atrial fibrillation. International Journal of Risk & Safety in Medicine. 2015;27(1):15-6. DOI:10.3233/JRS-150672.

67. Salnikova L., Smelaya T., Moroz V., et al. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. International Journal of Infectious Diseases. 2013;17(6):433-42. DOI:10.1016/j.ijid.2013.01.005.

68. Kryukov A., Sychev D., Andreev D., et al. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke. Pharmacogenomics and Personalized Medicine. 2018;11:43-9. DOI:10.2147/PGPM.S157111.

69. Sychev D., Rozhkov A., Kazakov R., et al. The impact of CYP4F2, ABCB1, and GGCX polymorphisms on bleeding episodes associated with acenocoumarol in Russian patients with atrial fibrillation. Drug Metabolism and Personalized Therapy. 2016;31(3):173-8. DOI:10.1515/dmpt-2016-0014.

70. SEARCH Collaborative Group, Link E, Parish S, et al. SLCO1B1 Variants and Statin-Induced Myopathy - A Genomewide Study. New England Journal of Medicine. 2008;359(8):789-99. DOI:10.1056/NEJMoa0801936.

71. Becquemont L., Alfirevic A., Amstutz U., et al. Practical recommendations for pharmacogenomicsbased prescription: 2010 ESF-UB Conference on Pharmacogenetics and Pharmacogenomics. Pharmacogenomics. 2011;12(1):113-24. DOI:10.2217/pgs.10.147.

72. Shuev G., Sychev D., Chertovskih J., et al. The frequency of SLCO1B1*5 polymorphism genotypes among Russian and Sakha (Yakutia) patients with hypercholesterolemia. Pharmacogenomics and Personalized Medicine. 2016;9:59-63. DOI:10.2147/PGPM.S99634.

73. Khokhlov A., Sychev D., Sirotkina A. Safety aspects of using of statins: drug interaction, pharmacogenetic questions. Universum: Medicine and Pharmacology: electron scientific journal 2016;24(1):17-34 (In Russ.).

74. Solodun M., Yakushin S. Aspects of lipid-lowering therapy with atorvastatin in patients with myocardial infarction from the perspective of personalized medicine. Rational Pharmacotherapy in Cardiology. 2015;11(1):31-5 (In Russ.) DOI:10.20996/1819-6446-2015-11-1-31-35.

75. Luzum J., Cheung J. Does cardiology hold pharmacogenetics to an inconsistent standard? A comparison of evidence among recommendations. Pharmacogenomics. 2018;19(15):1203-16. DOI:10.2217/pgs-2018-0097.

76. Evaluation of Genomic Applications in Practice and Prevention (EGAPP). Working Group: Methods|EGAPP|CDC. [cited by May 18, 2019]. Available from: www.cdc.gov/egappreviews/methods.html.

77. Tuteja S., Limdi N. Pharmacogenetics in Cardiovascular Medicine. Current Genetic Medicine Reports. 2016;4(3):119-29. DOI:10.1007/s40142-016-0096-z.

78. Haga S., Moaddeb J. Comparison of delivery strategies for pharmacogenetic testing services. Pharmacogenetics and Genomics. 2014;24(3):139-45. DOI:10.1097/FPC.0000000000000028.


For citation:


Mirzaev K.B., Fedorinov D.S., Ivashchenko D.V., Sychev D.A. Multi-Ethnic Analysis of Cardiac Pharmacogenetic Markers of Cytochrome P450 and Membrane Transporters Genes in the Russian Population. Rational Pharmacotherapy in Cardiology. 2019;15(3):393-406. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-3-393-406

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)