Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Atherosclerosis and Osteoporosis. Common Targets for the Effects of Cardiovascular and Anti-Osteoporotic Drugs (Part II). The Effect of Antiosteoporotic Drugs on the Vascular Wall State

https://doi.org/10.20996/1819-6446-2019-15-3-359-367

Full Text:

Abstract

In the second part of the literature review, data are presented on the possible effect of anti-osteoporosis therapy on the vascular wall and the development of calcification. The discovery of common biological substances involved in the development of atherosclerosis, calcification of the vascular wall and osteoporosis attracts the attention of scientists in terms of targets for assessing the effects of already known drugs or developing new drugs that can simultaneously prevent or slow the progression of both atherosclerosis and osteoporosis. Currently, various groups of drugs for the treatment of osteoporosis have been studied to prevent or reduce the progression of subclinical atherosclerosis and calcification. Both antiresorptive drugs (bisphosphonates, monoclonal antibodies to RANKL, selective estrogen receptor modulators), and bone-anabolic therapy, which includes teriparatide, were studied. However, there are a few such studies and the most promising drugs that have a preventive effect in the early stages of atherosclerotic damage are bisphosphonates. Other classes of antiosteoporotic drugs did not reveal a positive effect on the vascular wall, and some of them increased the cardiovascular risk. Divergences in the results of experimental and clinical studies attract attention. If in the experiment almost all drugs for the treatment of osteoporosis had an atheroprotective effect and suppressed vascular calcification, then in clinical conditions only bisphosphonates confirmed the positive effect on the vascular wall.

About the Authors

I. A. Skripnikova
National Medical Research Center for Preventive Medicine
Russian Federation

MD, PhD., Head of Osteoporosis Prevention Department

Petroverigsky per. 10, Moscow, 101990 Russia



O. V. Kosmatova
National Medical Research Center for Preventive Medicine
Russian Federation

MD, PhD, Senior Researcher, Osteoporosis Prevention Department

Petroverigsky per. 10, Moscow, 101990 Russia



M. A. Kolchinа
National Medical Research Center for Preventive Medicine
Russian Federation

MD, Doctor, Advisory Department

Petroverigsky per. 10, Moscow, 101990 Russia



M. A. Myagkova
National Medical Research Center for Preventive Medicine
Russian Federation

MD, Researcher, Osteoporosis Prevention Department

Petroverigsky per. 10, Moscow, 101990 Russia



N. A. Alikhanova
National Medical Research Center for Preventive Medicine
Russian Federation

PhD, Junior Researcher, Osteoporosis Prevention Department

Petroverigsky per. 10, Moscow, 101990 Russia



References

1. Frith J.C., Mönkkönen J., Blackburn G., et al. Clodronate and liposome-encapsulated clodronate are metabolized to atoxic ATP analog, adenosine 5′-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res. 1997;12(9):1358-67. DOI:10.1359/jbmr.1997.12.9.1358.

2. Osako M.K., Nakagami H., Koibuchi N., et al. Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res. 2010;107(4):466-75. DOI: 10.1161/circresaha.110.216846.

3. Ridley A.J., Hall A. The small GTP-binding protein who regulates the assembly of focal adhesions and actin stress fiber s in response to growth factors. Cell. 1992; 70(3):389-99.

4. Kanis J.A., Burlet N., Cooper C., et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3-44. DOI:10.1007/s00198-018-4704-5.

5. van Beek E., Pieterman E., Cohen L., et al. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun. 1999;264(1):108-11. DOI:10.1006/bbrc.1999.1499.

6. Frith J.C., Mönkkönen J., Blackburn G., et al. Clodronate and liposome-encapsulated clodronate are metabolized to atoxic ATP analog, adenosine 5′-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res. 1997;12(9):1358-67. DOI:10.1359/jbmr.1997.12.9.1358.

7. Bevilacqua M., Dominguez L.J., Rosini S., Barbagallo M. Bisphosphonates and atherosclerosis: why? Lupus. 2005;14(9):773-9. DOI:10.1191/0961203305lu2219oa.

8. Ridley A.J., Hall A. The small GTP-binding protein who regulates the assembly of focal adhesions and actin stress fiber s in response to growth factors. Cell. 1992; 70(3):389-99.

9. Danenberg H.D., Golomb G., Groothuis A., et al. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation. 2003;108(22):2798-804. DOI: 10.1161/01.CIR.0000097002.69209.CD.

10. van Beek E., Pieterman E., Cohen L., et al. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun. 1999;264(1):108-11. DOI:10.1006/bbrc.1999.1499.

11. Wu L., Zhu L., Shi W.H., et al. Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol. 2009;602(1):124-31. DOI:10.1016/j.ejphar.2008.10.043.

12. Bevilacqua M., Dominguez L.J., Rosini S., Barbagallo M. Bisphosphonates and atherosclerosis: why? Lupus. 2005;14(9):773-9. DOI:10.1191/0961203305lu2219oa.

13. Zhao Z., Shen W., Zhu H., et al. Zoledronate inhibits fibroblasts proliferation and activation via targeting TGF-β signaling pathway. Drug Des Devel Ther. 2018;12:3021-31. DOI:10.2147/DDDT.S168897.

14. Danenberg H.D., Golomb G., Groothuis A., et al. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation. 2003;108(22):2798-804. DOI: 10.1161/01.CIR.0000097002.69209.CD.

15. Izutani H., Miyagawa S., Shirakura R., et al. Recipient macrophage deletion reduces the severity of graft coronary arteriosclerosis in the rat transplantation model. Transplant Proc. 1997;29:861-2.

16. Wu L., Zhu L., Shi W.H., et al. Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol. 2009;602(1):124-31. DOI:10.1016/j.ejphar.2008.10.043.

17. Myers D.T., Karvelis K.C. Incidental detection of calcified dialysis graft on Tc-99m MDP bone scan. Clin Nucl Med. 1998;23(3):173-4.

18. Zhao Z., Shen W., Zhu H., et al. Zoledronate inhibits fibroblasts proliferation and activation via targeting TGF-β signaling pathway. Drug Des Devel Ther. 2018;12:3021-31. DOI:10.2147/DDDT.S168897.

19. Ylitalo R., Kalliovalkama J., Wu X., et al. Accumulation of bisphosphonates in human artery and their effects on human and rat arterial function in vitro. Pharmacol Toxicol. 1998;83:125-31.

20. Izutani H., Miyagawa S., Shirakura R., et al. Recipient macrophage deletion reduces the severity of graft coronary arteriosclerosis in the rat transplantation model. Transplant Proc. 1997;29:861-2.

21. Koshiyama H., Nakamura Y., Tanaka S., et al. Decrease in carotid intima-media thickness after 1-year therapy with etidronate for osteopenia associated with type 2 diabetes. J Clin Endocrinol Metab. 2000;85:2793-6. DOI:10.1210/jcem.85.8.6748.

22. Myers D.T., Karvelis K.C. Incidental detection of calcified dialysis graft on Tc-99m MDP bone scan. Clin Nucl Med. 1998;23(3):173-4.

23. Celiloglu M., AydinY., Balci P., et al. The effect of alendronate sodium on carotid artery intima-media thickness and lipid profile in women with post-menopausal osteoporosis. Menopause. 2009;16(4):689-93. DOI:10.1097/gme.0b013e318194cafd.

24. Ylitalo R., Kalliovalkama J., Wu X., et al. Accumulation of bisphosphonates in human artery and their effects on human and rat arterial function in vitro. Pharmacol Toxicol. 1998;83:125-31.

25. Delibasi T., Emral R., Erdogan M.F., et al. Effects of alendronate sodium therapy on carotid intima media thickness in postmenopausal women with osteoporosis. Adv Ther. 2007;24(2):319-25. DOI:10.1007/BF02849900.

26. Koshiyama H., Nakamura Y., Tanaka S., et al. Decrease in carotid intima-media thickness after 1-year therapy with etidronate for osteopenia associated with type 2 diabetes. J Clin Endocrinol Metab. 2000;85:2793-6. DOI:10.1210/jcem.85.8.6748.

27. Gonnelli S., Caffarelli C., Tanzilli L., et al. Effects of intravenous zoledronate and ibandronate on carotid intima-media thickness, lipids and FGF-23 in postmenopausal osteoporotic women. Bone. 2014;61:27-32. DOI:10.1016/j.bone.2013.12.017.

28. Celiloglu M., AydinY., Balci P., et al. The effect of alendronate sodium on carotid artery intima-media thickness and lipid profile in women with post-menopausal osteoporosis. Menopause. 2009;16(4):689-93. DOI:10.1097/gme.0b013e318194cafd.

29. Luckish A., Cernes R., Boaz M., et al. Effect of long-term treatment with risedronate on arterial compliance in osteoporotic patients with cardiovascular risk factors. Bone. 2008;43(2):279-283. DOI:10.1016/j.bone.2008.03.030.

30. Delibasi T., Emral R., Erdogan M.F., et al. Effects of alendronate sodium therapy on carotid intima media thickness in postmenopausal women with osteoporosis. Adv Ther. 2007;24(2):319-25. DOI:10.1007/BF02849900.

31. Ariyoshi T., Eishi K., Sakamoto I., et al. Effect of etidronic acid on arterial calcification in dialysis patients. Clin Drug Investig. 2006;26(4):215-222. DOI:10.2165/00044011-200626040-00006.

32. Gonnelli S., Caffarelli C., Tanzilli L., et al. Effects of intravenous zoledronate and ibandronate on carotid intima-media thickness, lipids and FGF-23 in postmenopausal osteoporotic women. Bone. 2014;61:27-32. DOI:10.1016/j.bone.2013.12.017.

33. Hashiba H., Aizawa S., Tamura K., Kogo H. Inhibition of the progression of aortic calcification by etidronate treatment in hemodialysis patients: long-term effects. Ther Apher Dial. 2006;10(1):59-64. DOI:10.1111/j.1744-9987.2006.00345.x.

34. Luckish A., Cernes R., Boaz M., et al. Effect of long-term treatment with risedronate on arterial compliance in osteoporotic patients with cardiovascular risk factors. Bone. 2008;43(2):279-283. DOI:10.1016/j.bone.2008.03.030.

35. Okamoto M., Yamanaka S., Yoshimoto W., Shigematsu T. Alendronate as an effective treatment for bone loss and vascular calcification in kidney transplant recipients. J Transplant. 2014;2014:269613. DOI:10.1155/2014/269613.

36. Ariyoshi T., Eishi K., Sakamoto I., et al. Effect of etidronic acid on arterial calcification in dialysis patients. Clin Drug Investig. 2006;26(4):215-222. DOI:10.2165/00044011-200626040-00006.

37. Torregrosa J.V., Fuster D., Gentil M.A., et al. Open-label trial: effect of weekly risedronate immediately after transplantation in kidney recipients. Transplantation. 2010;89(12):1476-81. DOI:10.1155/2014/269613.

38. Hashiba H., Aizawa S., Tamura K., Kogo H. Inhibition of the progression of aortic calcification by etidronate treatment in hemodialysis patients: long-term effects. Ther Apher Dial. 2006;10(1):59-64. DOI:10.1111/j.1744-9987.2006.00345.x.

39. Hill J.A., Goldin J.G., Gjertson D., et al. Progression of coronary artery calcification in patients taking alendronate for osteoporosis. Acad Radiol. 2002;9(10):1148-52.

40. Okamoto M., Yamanaka S., Yoshimoto W., Shigematsu T. Alendronate as an effective treatment for bone loss and vascular calcification in kidney transplant recipients. J Transplant. 2014;2014:269613. DOI:10.1155/2014/269613.

41. Tanko L.B., Qin G., Alexandersen P., et al. Effective doses of ibandronate do not influence the 3-year progression of aortic calcification in elderly osteoporotic women. Osteoporos Int. 2005;16:184-90. DOI:10.1007/s00198-004-1662-x.

42. Torregrosa J.V., Fuster D., Gentil M.A., et al. Open-label trial: effect of weekly risedronate immediately after transplantation in kidney recipients. Transplantation. 2010;89(12):1476-81. DOI:10.1155/2014/269613.

43. Elmariah S., Delaney J.A., O'Brien K.D., et al. Bisphosphonate use and prevalence of valvular and vascular calcification in women. MESA (The Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2010;56(21):1752-9. DOI:10.1016/j.jacc.2010.05.050.

44. Hill J.A., Goldin J.G., Gjertson D., et al. Progression of coronary artery calcification in patients taking alendronate for osteoporosis. Acad Radiol. 2002;9(10):1148-52.

45. Moen M.D., Keam S.J. Denosumab: A review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging. 2011;28(1):63-82. DOI: 10.2165/11203300-000000000-00000.

46. Tanko L.B., Qin G., Alexandersen P., et al. Effective doses of ibandronate do not influence the 3-year progression of aortic calcification in elderly osteoporotic women. Osteoporos Int. 2005;16:184-90. DOI:10.1007/s00198-004-1662-x.

47. Cummings S.R., San Martin J., McClung M.R., et al. FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis N Engl J Med. 2009;20;361(8):756-65. DOI:10.1056/NEJMoa0809493.

48. Elmariah S., Delaney J.A., O'Brien K.D., et al. Bisphosphonate use and prevalence of valvular and vascular calcification in women. MESA (The Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2010;56(21):1752-9. DOI:10.1016/j.jacc.2010.05.050.

49. Lerman D.A, Prasad S.1., Alotti N. Denosumab could be a potential inhibitor of valvular interstitial cells calcification in vitro. Int J Cardiovasc Res. 2016;5(1). DOI:10.4172/2324-8602.1000249.

50. Moen M.D., Keam S.J. Denosumab: A review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging. 2011;28(1):63-82. DOI: 10.2165/11203300-000000000-00000.

51. Helas S., Goettsch C., Schoppet M., et al. Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol. 2009;175(2):473-8. DOI:10.2353/ajpath.2009.080957.

52. Cummings S.R., San Martin J., McClung M.R., et al. FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis N Engl J Med. 2009;20;361(8):756-65. DOI:10.1056/NEJMoa0809493.

53. Samelson E.J., Miller P.D., Christiansen C., et al. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res. 2014;29(2):450-7. DOI:10.1002/jbmr.2043.

54. Lerman D.A, Prasad S.1., Alotti N. Denosumab could be a potential inhibitor of valvular interstitial cells calcification in vitro. Int J Cardiovasc Res. 2016;5(1). DOI:10.4172/2324-8602.1000249.

55. University of Edinburg. Study Investigating the effect of drugs used to treat osteoporosis on progression of calcific aortic stenosis SALTIERE II. 2014 [cited by May 27, 2019]. Available from: http://clinicaltrials.gov/ct2/show/NOTO2132026.

56. Helas S., Goettsch C., Schoppet M., et al. Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol. 2009;175(2):473-8. DOI:10.2353/ajpath.2009.080957.

57. Guo J., Liu M., Yang D. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010;11(2):161-71. DOI:10.1016/j.cmet. 2009.12.007.

58. Samelson E.J., Miller P.D., Christiansen C., et al. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res. 2014;29(2):450-7. DOI:10.1002/jbmr.2043.

59. Robling A.G., Kedlaya R., Ellis S.N., et al. Anabolic and catabolic regimens of human parathyroid hormone 1-34 elicit bone- and envelop-specific attenuation of skeletal effects in SOST-deficient mice. Endocrinology. 2011;152(8):2963-75. DOI:10.1210/en.2011-0049.

60. University of Edinburg. Study Investigating the effect of drugs used to treat osteoporosis on progression of calcific aortic stenosis SALTIERE II. 2014 [cited by May 27, 2019]. Available from: http://clinicaltrials.gov/ct2/show/NOTO2132026.

61. Rhee Y., Allen M.R., Condon K., et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res. 2011;26(5):1035-46. DOI:10.1002/jbmr.304.

62. Guo J., Liu M., Yang D. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010;11(2):161-71. DOI:10.1016/j.cmet. 2009.12.007.

63. McClung M.R., Martin J.S., Miller P.D., et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med, 2005;165Z:1762-8. DOI:10.1001/archinte.165.15.1762.

64. Robling A.G., Kedlaya R., Ellis S.N., et al. Anabolic and catabolic regimens of human parathyroid hormone 1-34 elicit bone- and envelop-specific attenuation of skeletal effects in SOST-deficient mice. Endocrinology. 2011;152(8):2963-75. DOI:10.1210/en.2011-0049.

65. Saag K.G., Shane E., Boonen S. et al. Teriparatide or Alendronate in Glucocorticoid-Induced Osteoporosis. Engl J Med. 2007;357:2028-39 DOI:10.1056/NEJMoa07140.

66. Rhee Y., Allen M.R., Condon K., et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res. 2011;26(5):1035-46. DOI:10.1002/jbmr.304.

67. Shao J.S., Cheng S.L., Charlton-Kachigian N. Teriparatide [human parathyroid hormone (1-34)] inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003;278:50195-202. DOI:10.1074/jbc.M308825200.

68. McClung M.R., Martin J.S., Miller P.D., et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med, 2005;165Z:1762-8. DOI:10.1001/archinte.165.15.1762.

69. Celer O., Akalın A., Oztunali C., Effect of teriparatide treatment on endothelial function, glucose metabolism and inflammation markers in patients with postmenopausal osteoporosis. J Clin Endocrinol. 2016;85(4):556-60. DOI:10.1111/cen.13139.

70. Saag K.G., Shane E., Boonen S. et al. Teriparatide or Alendronate in Glucocorticoid-Induced Osteoporosis. Engl J Med. 2007;357:2028-39 DOI:10.1056/NEJMoa07140.

71. Yoda M., Imanishi Y., Nagata Y. et al. Teriparatide therapy reduces serum phosphate and intimamedia thickness at the carotid wall artery in patients with osteoporosis. Calcif Tissue Int. 2015l;97(1):32-9. DOI:10.1007/s00223-015-0007-4.

72. Shao J.S., Cheng S.L., Charlton-Kachigian N. Teriparatide [human parathyroid hormone (1-34)] inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J Biol Chem. 2003;278:50195-202. DOI:10.1074/jbc.M308825200.

73. Passeri E., Mazzaccaro D., Sansoni V., et al. Effects of 12-months treatment with zoledronate or teriparatide on intima-media thickness of carotid artery in women with postmenopausal osteoporosis: A pilot study. Int J Immunopathol Pharmacol. 2019;33:2058738418822439. DOI:10.1177/2058738418822439.

74. Celer O., Akalın A., Oztunali C., Effect of teriparatide treatment on endothelial function, glucose metabolism and inflammation markers in patients with postmenopausal osteoporosis. J Clin Endocrinol. 2016;85(4):556-60. DOI:10.1111/cen.13139.

75. Cheng X.W., Kikuchi R., Ishii H., et al. Circulating cathepsin K as a potential novel biomarker of coronary artery disease. Atherosclerosis. 2013;228(1):211-6. DOI:10.1016/j.atherosclerosis. 2013.01.004.

76. Yoda M., Imanishi Y., Nagata Y. et al. Teriparatide therapy reduces serum phosphate and intimamedia thickness at the carotid wall artery in patients with osteoporosis. Calcif Tissue Int. 2015l;97(1):32-9. DOI:10.1007/s00223-015-0007-4.

77. Zhao H., Qin X., Wang S., et al. Increased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability. Exp Ther Med. 2017;14(4):3471-6. DOI:10.3892/etm.2017.4935.

78. Passeri E., Mazzaccaro D., Sansoni V., et al. Effects of 12-months treatment with zoledronate or teriparatide on intima-media thickness of carotid artery in women with postmenopausal osteoporosis: A pilot study. Int J Immunopathol Pharmacol. 2019;33:2058738418822439. DOI:10.1177/2058738418822439.

79. Li X., Li Y., Jin J., et al. Increased Serum Cathepsin K in Patients with Coronary Artery Disease. Yonsei Med J. 2014;55(4):912-9. DOI:10.3349/ymj.2014.55.4.912.

80. Cheng X.W., Kikuchi R., Ishii H., et al. Circulating cathepsin K as a potential novel biomarker of coronary artery disease. Atherosclerosis. 2013;228(1):211-6. DOI:10.1016/j.atherosclerosis. 2013.01.004.

81. Samokhin A.O., Wong A., Saftig P., Bromme D. Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis. 2008;200(1):58-68. DOI:10.1016/j.atherosclerosis.2007.12.047.

82. Zhao H., Qin X., Wang S., et al. Increased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability. Exp Ther Med. 2017;14(4):3471-6. DOI:10.3892/etm.2017.4935.

83. Wu H., Du Q., Dai Q., Ge J., Cheng X. Cysteine protease cathepsins in atherosclerotic cardiovascular diseases. J Atheroscler Thromb. 2018;25(2):111-23. DOI:10.5551/jat.RV17016.

84. Li X., Li Y., Jin J., et al. Increased Serum Cathepsin K in Patients with Coronary Artery Disease. Yonsei Med J. 2014;55(4):912-9. DOI:10.3349/ymj.2014.55.4.912.

85. Stroup G., Kumar S., Jerome C. Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcified Tissue International. 2009;85(4):344-55. DOI:10.1007/s00223-009-9279-x.

86. Samokhin A.O., Wong A., Saftig P., Bromme D. Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis. 2008;200(1):58-68. DOI:10.1016/j.atherosclerosis.2007.12.047.

87. Jerome C., Missbach M., Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2011;22:3001-11. DOI:10.1007/s00198-011-1529-x.

88. Wu H., Du Q., Dai Q., Ge J., Cheng X. Cysteine protease cathepsins in atherosclerotic cardiovascular diseases. J Atheroscler Thromb. 2018;25(2):111-23. DOI:10.5551/jat.RV17016.

89. Masarachia P., Pennypacker B., Pickarski M., et al. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2011;27:509-23. DOI:10.1002/jbmr.1475.

90. Stroup G., Kumar S., Jerome C. Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcified Tissue International. 2009;85(4):344-55. DOI:10.1007/s00223-009-9279-x.

91. Podgorski I. Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem. 2009;1:21-34.

92. Jerome C., Missbach M., Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2011;22:3001-11. DOI:10.1007/s00198-011-1529-x.

93. Zerbini C.A., McClung M.R. Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence. Ther Adv Musculoskelet Dis. 2013;5(4):199-209. DOI:10.1177/1759720X13490860.

94. Masarachia P., Pennypacker B., Pickarski M., et al. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2011;27:509-23. DOI:10.1002/jbmr.1475.

95. Nakamura T., Shiraki M., Fukunaga M., et al. Effect of the cathepsin K inhibitor odanacatib administered once weekly on bone mineral density in Japanese patients with osteoporosis--a double-blind, randomized, dose-finding study. Osteoporos Int. 2014;25(1):367-76. DOI:10.1007/s00198-013-2398-2.

96. Podgorski I. Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem. 2009;1:21-34.

97. Langdahl B., Binkley N., Bone H., et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res. 2012;27(11):2251-8. DOI:10.1002/jbmr.1695.

98. Zerbini C.A., McClung M.R. Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence. Ther Adv Musculoskelet Dis. 2013;5(4):199-209. DOI:10.1177/1759720X13490860.

99. Bone H.G., Dempster D.W., Eisman J.A., et al. Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the Long-Term Odanacatib Fracture Trial. Osteoporos Int. 2015;26(2):699-712. DOI:10.1007/s00198-014-2944-6.

100. Nakamura T., Shiraki M., Fukunaga M., et al. Effect of the cathepsin K inhibitor odanacatib administered once weekly on bone mineral density in Japanese patients with osteoporosis--a double-blind, randomized, dose-finding study. Osteoporos Int. 2014;25(1):367-76. DOI:10.1007/s00198-013-2398-2.

101. Ettinger B., Black D.M., Mitlak B.H. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3 year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282:637-45.

102. Langdahl B., Binkley N., Bone H., et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res. 2012;27(11):2251-8. DOI:10.1002/jbmr.1695.

103. Kanis J.A., Johansson H., Oden A., Mc Closkey E.V. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone. 2009;44(6):1049-54. DOI:10.1016/j.bone.2009.02.014.

104. Bone H.G., Dempster D.W., Eisman J.A., et al. Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the Long-Term Odanacatib Fracture Trial. Osteoporos Int. 2015;26(2):699-712. DOI:10.1007/s00198-014-2944-6.

105. Clarkson T.B., Ethun K.F., Chen H., et al. Effects of bazedoxifene alone and with conjugated equine estrogens on coronary and peripheral artery atherosclerosis in postmenopausal monkeys. Menopause. 2013;20(3):274-81. DOI:10.1097/GME.0b013e318271e59b.

106. Ettinger B., Black D.M., Mitlak B.H. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3 year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282:637-45.

107. Komm BS, Thompson JR, Mirkin S. Cardiovascular safety of conjugated estrogens plus bazedoxifene: meta-analysis of the SMART trials. Climacteric. 2015;18(4):503-11. DOI:10.3109/13697137.2014.992011.

108. Kanis J.A., Johansson H., Oden A., Mc Closkey E.V. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone. 2009;44(6):1049-54. DOI:10.1016/j.bone.2009.02.014.

109. Clarkson T.B., Ethun K.F., Chen H., et al. Effects of bazedoxifene alone and with conjugated equine estrogens on coronary and peripheral artery atherosclerosis in postmenopausal monkeys. Menopause. 2013;20(3):274-81. DOI:10.1097/GME.0b013e318271e59b.

110. Komm BS, Thompson JR, Mirkin S. Cardiovascular safety of conjugated estrogens plus bazedoxifene: meta-analysis of the SMART trials. Climacteric. 2015;18(4):503-11. DOI:10.3109/13697137.2014.992011.


For citation:


Skripnikova I.A., Kosmatova O.V., Kolchinа M.A., Myagkova M.A., Alikhanova N.A. Atherosclerosis and Osteoporosis. Common Targets for the Effects of Cardiovascular and Anti-Osteoporotic Drugs (Part II). The Effect of Antiosteoporotic Drugs on the Vascular Wall State. Rational Pharmacotherapy in Cardiology. 2019;15(3):359-367. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-3-359-367

Views: 103


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)