Rational Pharmacotherapy in Cardiology

Advanced search

Effect of the Single-Pill Amlodipine/Valsartan Combination on Hypertrophy and Myocardial Deformation Characteristics in Middle-Aged Patients with Essential Arterial Hypertension

Full Text:


Aim. To investigate the impact of amlodipine/valsartan single-pill combination (A/V SPC) on left ventricular hypertrophy (LVH) and left ventricular (LV) myocardial strain and stiffness parameters in naїve middle-aged patients with stage II grade 1-2 essential arterial hypertension (EAH).
Material and methods. A group of patients with stage II grade 1-2 EAH who had not previously received regular antihypertensive treatment (AHT) [n=38; mean age 49.7±7.0 years] was retrospectively formed. All the patients were treated with A/V SPC and all of them achieved target office blood pressure (BP) (less than 140/90 mm Hg). And after 12 weeks follow-up (since the time of reaching the target BP) the AHT effectiveness assessment, its impact on LVH and LV myocardial strain and stiffness parameters (general clinical data, ambulatory blood pressure monitoring, conventional and 2D-speckle tracking echocardiography) were performed in all included patients.
Results. The number of patients with LVH significantly (p=0.039) decreased from 25 individuals (65.8%) at baseline to 15 patients (39.5%) at the end of follow-up. Among patients with LVH at baseline after the treatment with A/V SPC significantly decreased (p<0.001 for all) interventricular septum thickness (from 1.36±0.19 to 1.28±0.18 cm), LV posterior wall thickness (from 1.08±0.09 to 0.97±0.11 cm) and the LV myocardial mass index (from 123.3±19.3 to 110.8±20.8 g/m2). At the end of follow-up end-systolic elastance significantly (p<0.001) decreased from 4.01±1.12 to 3.46±0.88 mm Hg/ml. In the subgroup of patients with reduced (in absolute value) LV longitudinal 2D-strain (n=27) at baseline, there was a significantly (p=0.005) increasing in this parameter at the end of the study (from -16.14±2.21% to -17.30±2.13%, Δ%=8.45±13.35).
Conclusion. In naive patients 40-65 years old with stage II grade 1-2 EAH AHT with A/V SPC provides effective 24 hours BP control, significantly reduced LVH and improves LV strain parameters, which indicates decreasing of LV myocardial stiffness.

About the Authors

A. I. Kochetkov
Pirogov Russian National Research Medical University
Russian Federation

MD, PhD, Researcher, Laboratory of Clinical Pharmacology and Pharmacotherapy, Russian Gerontology Clinical Research Center; Assistant, Chair of Aging Diseases

Ostrovitianova ul. 1, Moscow, 117997 Russia

E. V. Borisova
E.O. Mukhin Municipal Clinical Hospital
Russian Federation

MD, Cardiologist, Cardiology Department No1

Federativnii prospect, 17, Moscow, 111399 Russia

O. D. Ostroumova
Pirogov Russian National Research Medical University I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

MD, PhD, Head of Laboratory of Clinical Pharmacology and Pharmacotherapy, Russian Gerontology Clinical Research Center; Professor, Chair of Clinical Pharmacology and Propaedeutics of Internal Medicine

Ostrovitianova ul. 1, Moscow, 117997 Russia

Trubetskaya ul. 8-2, Moscow, 119991 Russia

M. V. Lopukhina
E.O. Mukhin Municipal Clinical Hospital
Russian Federation

MD, PhD, Cardiologist, Head of Functional Diagnostics Department

Federativnii prospect, 17, Moscow, 111399 Russia

G. V. Piksina
E.O. Mukhin Municipal Clinical Hospital
Russian Federation

MD, PhD, Cardiologist, Head of Cardiology Department No1

Federativnii prospect, 17, Moscow, 111399 Russia


1. Williams B., Mancia G., Spiering W., et al.; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021-104. DOI:10.1093/eurheartj/ehy339.

2. Kannel W.B. Left ventricular hypertrophy as a risk factor in arterial hypertension. Eur Heart J 1992;13(Suppl D):82-8. DOI:10.1093/eurheartj/13.suppl_D.82.

3. Stevens S.M., Reinier K., Chugh S.S. Increased left ventricular mass as a predictor of sudden cardiac death: is it time to put it to the test? Circulation: Arrhythmia and Electrophysiology. 2013;6(1):212-7. DOI:10.1161/CIRCEP.112.974931.

4. Bombelli M., Facchetti R., Carugo S., et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458-64. DOI:10.1097/HJH.0b013e328330b845.

5. Bouzas-Mosquera A., Broullo´n F.J., A´ lvarez-Garcı´a N., et al. Association of Left Ventricular Mass with All-Cause Mortality, Myocardial Infarction and Stroke. PLoS ONE. 2012;7(9):e45570. DOI:10.1371/journal.pone.0045570.

6. de Simone G., Gottdiener J.S., Chinali M., et al. Left ventricular mass predicts heart failure not related to previous myocardial infarction: The Cardiovascular Health Study. Eur Heart J. 2008;29(6):741-7. DOI:10.1093/eurheartj/ehm605.

7. Chrispin J., Jain A., Soliman E.Z., et al. Association of electrocardiographic and imaging surrogates of left ventricular hypertrophy with incident atrial fibrillation: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2014;63(19):2007-13. DOI:10.1016/j.jacc.2014.01.066.

8. Paoletti E., De Nicola L., Gabbai F.B., et al. Associations of Left Ventricular Hypertrophy and Geometry with Adverse Outcomes in Patients with CKD and Hypertension. Clin J Am Soc Nephrol.

9. 2016;11(2):271-9. DOI:10.2215/CJN.06980615.

10. Shi H.T., Wang X.J., Li J., et al. Association of Left Ventricular Hypertrophy with a Faster Rate of Renal Function Decline in Elderly Patients with Non‐End‐Stage Renal Disease. Journal of the American Heart Association. 2015;4(11):e002213. DOI:10.1161/JAHA.115.002213.

11. Santos M., Shah A.M. Alterations in cardiac structure and function in hypertension. Curr Hypertens Rep. 2014;16(5):428. DOI:10.1007/s11906-014-0428-x.

12. Gosse P. Left ventricular hypertrophy-the problem and possible solutions. J Int Med Res. 2005;33 Suppl 1:3A-11A. DOI:10.1177/14732300050330S102.

13. Musini V.M., Gueyffier F., Puil L., et al. Pharmacotherapy for hypertension in adults aged 18 to 59 years. Cochrane Database Syst Rev. 2017;8:CD008276. DOI:10.1002/14651858.CD008276.pub2.

14. O’Brien E., Parati G., Stergiou G., et al., on behalf of the European Society of Hypertension Working Group on Blood Pressure Monitoring. Guidelines European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. Journal of Hypertension. 2013;31:1731-68. DOI:10.1097/HJH.0b013e328363e964.

15. Lang R.M., Badano L.P., Mor-Avi V., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. DOI:10.1016/j.echo.2014.10.003.

16. Marwick T.H., Gillebert T.C., Aurigemma G., et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). Eur Heart J Cardiovasc Imaging. 2015;16(6):577-605. DOI: 10.1093/ehjci/jev076.

17. Mor-Avi V., Lang R.M., Badano L.P., et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277-313. DOI:10.1016/j.echo.2011.01.015.

18. Shang Q., Tam L.S., Sanderson J.E., et al. Increase in ventricular-arterial stiffness in patients with psoriatic arthritis. Rheumatology (Oxford). 2012;51(12):2215-23. DOI:10.1093/rheumatology/kes213.

19. Borlaug B.A., Redfield M.M., Melenovsky V., et al. Longitudinal changes in left ventricular stiffness: a community-based study. Circ Heart Fail. 2013;6(5):944-52. DOI:10.1161/CIRCHEARTFAILURE.113.000383.

20. Ostroumova O.D., Borisova E.V., Kochetkov A.I., et al. Improving the cognitive functions in the middle-aged patients with essential arterial hypertension after the treatment with amlodipine/valsartan single-pill combination. Rational Pharmacotherapy in Cardiology. 2019;15(1):54-62. (In Russ.) DOI:10.20996/1819-6446-2019-15-1-54-62.

21. Kang S.J., Lim H.S., Choi B.J., et al. Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J Am Soc Echocardiogr. 2008;21(8):907-11. DOI:10.1016/j.echo.2008.01.015.

22. Krämer J., Niemann M., Liu D., et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J. 2013;34(21):1587-96. DOI:10.1093/eurheartj/eht098.

23. Ishizu T., Seo Y., Kameda Y., et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension. 2014;63(3):500-6. DOI:10.1161/HYPERTENSIONAHA.113.02149.

24. Kucukler N., Kurt I.H., Topaloglu C., et al. The effect of valsartan on left ventricular myocardial functions in hypertensive patients with left ventricular hypertrophy. J Cardiovasc Med (Hagerstown). 2012;13(3):181-6. DOI:10.2459/JCM.0b013e3283511f00.

25. Suzuki K., Kato K., Soda S., et al. The effect of valsartan on regression of left ventricular hypertrophy in type 2 diabetic patients. Diabetes Obes Metab. 2004;6(3):195-9. DOI:10.1111/j.1462-8902.2004.00331.x.

26. Zhi-Bin H., Chang F., Mao-Huan L., et al. Valsartan improves the electrophysiological characteristics of left ventricular hypertrophic myocardium in spontaneously hypertensive rats. Hypertens Res. 2014;37(9):824-9. DOI:10.1038/hr.2014.85.

27. Deng X.U., Xia K.E., Chen P.O., et al. Reversion of left ventricle remodeling in spontaneously hypertensive rats by valsartan is associated with the inhibition of caspase-3, -8 and -9 activities. Biomed Rep. 2015;3(4):533-6. DOI:10.3892/br.2015.458.

28. Li W., Sun N., Liu W., et al. Influence of Valsartan on myocardial apoptosis in spontaneously hypertensive rats. Chin Med J (Engl). 2002;115(3):364-6.

29. Correia-Pinto J., Henriques-Coelho T., Roncon-Albuquerque R. Jr., et al. Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension. Basic Res Cardiol. 2009;104(5):535-45. DOI:10.1007/s00395-009-0017-3.

30. Zhang X., Li Z.L., Crane J.A., et al. Valsartan regulates myocardial autophagy and mitochondrial turnover in experimental hypertension. Hypertension. 2014;64(1):87-93. DOI:10.1161/HYPERTENSIONAHA.113.02151.

31. Ageev F.T., Ovchinnikov A.G., Serbul V.M., Belenkov Yu.N. Left ventricle hypertrophy: the role of the renin-angiotensin system. Cardiovascular Therapy and Prevention. 2008;7(2):98-108. (In Russ.) DOI:10.1056/NEJM199910213411706.

32. Abaturova O.V., Kremneva L.V., Shalaev S.V. Hypertrophy of the left ventricle: the role of hemodynamic and neurohormonal factors, the molecular-cellular mechanisms of development. Ural'skij Meditsinskij Zhurnal. 2004;7:11-16. (In Russ.)

33. Kahan T. The importance of myocardial fibrosis in hypertensive heart disease. Journal of Hypertension. 2012;30(4):685-7. DOI:10.1097/HJH.0b013e328350e5db.

34. Jellis C., Martin J., Narula J., Marwick T.H. Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol. 2010;56(2):89-97. DOI:10.1016/j.jacc.2010.02.047.

35. Imbalzano E., Zito C., Carerj S., et al. Left ventricular function in hypertension: new insight by speckle tracking echocardiography. Echocardiography. 2011;28(6):649-57. DOI:10.1111/j.1540-8175.2011.01410.x.

36. Mizuguchi Y., Oishi Y., Miyoshi H., et al. The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. J Am Soc Echocardiogr. 2008;21:1138-44. DOI:10.1016/j.echo.2008.07.016.

37. Oishi Y., Miyoshi H., Iuchi A., et al. Negative impact of cardiovascular risk factors on left atrial and left ventricular function related to aortic stiffness-new application of 2-dimensional speckle-tracking echocardiography. Circ J. 2013;77:1490-8. DOI:10.1253/circj.CJ-12-1260.

38. Biering-Sørensen T., Biering-Sørensen S.R., Olsen F.J., et al. Global Longitudinal Strain by Echocardiography Predicts Long-Term Risk of Cardiovascular Morbidity and Mortality in a Low-Risk General Population: The Copenhagen City Heart Study. Circ Cardiovasc Imaging. 2017;10(3):e005521. DOI:10.1161/CIRCIMAGING.116.005521.

39. Nahum J., Bensaid A., Dussault C., et al. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imaging. 2010;3(3):249-56. DOI:10.1161/CIRCIMAGING.109.910893.

40. Bertini M., Ng A.C., Antoni M.L., et al. Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(3):383-91. DOI:10.1161/CIRCIMAGING.111.970434.

41. Motoki H., Koyama J., Izawa A., et al. Impact of azelnidipine and amlodipine on left ventricular mass and longitudinal function in hypertensive patients with left ventricular hypertrophy. Echocardiography. 2014;31(10):1230-8. DOI:10.1111/echo.12548.

42. Carugo S., Bolla G. B., Famiani R., et al. Effects of valsartan treatment on indicators of cardiovascular damage in newly diagnosed hypertensive patients: A prospective, twelve-month, open-label, pilot study. Current Therapeutic Research. 2010;71(5):309-21. DOI:10.1016/j.curtheres.2010.10.002.

43. Xing S.S., Tan H.W., Bi X.P., et al. Felodipine reduces cardiac expression of IL-18 and perivascular fibrosis in fructose-fed rats. Mol Med. 2008;14(7-8):395-402. DOI:10.2119/2008-00024.Xing.

44. Siddesha J.M., Valente A.J., Sakamuri S.S., et al. Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK. J Cell Physiol. 2014;229(7):845-55. DOI:10.1002/jcp.24511.

45. Matsubara M., Hasegawa K. Effects of benidipine, a dihydropyridine-Ca2+ channel blocker, on expression of cytokine-induced adhesion molecules and chemoattractants in human aortic endothelial cells. Eur J Pharmacol. 2004;498(1-3):303-14. DOI:10.1016/j.ejphar.2004.07.086.

46. Matsumori A., Nunokawa Y., Sasayama S. Nifedipine inhibits activation of transcription factor NFkappaB. Life Sci. 2000;67(21):2655-61. DOI:10.1016/S0024-3205(00)00849-3.

47. Iwasaki Y., Asai M., Yoshida M., et al. Nilvadipine inhibits nuclear factor-kappaB-dependent transcription in hepatic cells. Clin Chim Acta. 2004;350(1-2):151-7. DOI:10.1016/j.cccn.2004.07.012.


For citations:

Kochetkov A.I., Borisova E.V., Ostroumova O.D., Lopukhina M.V., Piksina G.V. Effect of the Single-Pill Amlodipine/Valsartan Combination on Hypertrophy and Myocardial Deformation Characteristics in Middle-Aged Patients with Essential Arterial Hypertension. Rational Pharmacotherapy in Cardiology. 2019;15(3):305-314. (In Russ.)

Views: 738

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)