Preview

Rational Pharmacotherapy in Cardiology

Advanced search

New Guidelines on Management of Arterial Hypertension: Key Similarities and Differences

https://doi.org/10.20996/1819-6446-2019-15-1-105-114

Full Text:

Abstract

Steady increase in worldwide prevalence of hypertension and hypertension-related cardiovascular morbidity and mortality necessitate new approaches to the management of hypertensive patients. It`s important to recognize that despite several differences the convergence of the 2017 ACC/AHA (US) and 2018 ESC/ESH (European) guidelines is greater now than ever before. The present review focuses on the key similarities and differences of these two documents. Among similarities we analyzed positions regarding the importance of cardiovascular risk evaluation for treatment initiation and choice of optimal treatment strategy: blood pressure (BP) treatment thresholds; drugs of choice for the initiation of antihypertensive therapy and treatment targets in different groups including elderly patients. Among key differences we analyzed sections concerning the classification of BP levels and target BP levels in patients with chronic kidney disease. In conclusion, we may say that in many ways the guidelines are just a different interpretation of the same data. There is no doubt in the importance of lowering high BP and evaluation and correction of high cardiovascular risk. One of the main purposes is to focus attention on younger patients with hypertension.

About the Authors

Zh. D. Kobalava
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

MD, PhD, Professor, Head of Chair of Internal Medicine with the Subspecialty of Cardiology and Functional Diagnostics named after V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198 



E. A. Troitskaya
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

MD, PhD, Associate Professor, Chair of Internal Medicine with the Subspecialty of Cardiology and Functional Diagnostics named after V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198 



E. L. Kolesnik
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

MD, PhD, Assistant, Chair of Internal Medicine with the Subspecialty of Cardiology and Functional Diagnostics named after V.S. Moiseev,

Miklukho-Maklaya ul. 6, Moscow, 117198 



References

1. Lim S.S., Vos T., Flaxman A.D. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224-60. doi:10.1016/S0140-6736(12)61766-8.

2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017;389(10064):37-55. doi:10.1016/S0140-6736(16)31919-5.

3. Roth G.A., Johnson C., Abajobir A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. doi:10.1016/j.jacc.2017.04.052

4. GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659-724. doi:10.1016/S0140-6736(16)31679-8.

5. Gaziano T.A., Bitton A., Anand S., Weinstein M.C. The global cost of nonoptimal blood pressure. J Hypertens. 2009;27(7):1472-7. doi:10.1097/HJH.0b013e32832a9ba3.

6. Boytsov S.A., Balanova Y.A., Shalnova S.A. et al. Arterial hypertension among individuals of 25-64 years old: prevalence, awareness, treatment and control. By the data from ECCD. Cardiovascular Therapy and Prevention 2014;13(4):4-14 (In Russ.)

7. Oganov R.G., Timofeeva T.N., Koltunov I.E. et al. Arterial hypertension epidemiology in Russia; the results of 2003-2010 federal monitoring. Cardiovascular Therapy and Prevention 2011;10(1):9-13 (In Russ.)

8. Noncommunicable Diseases Global Monitoring Framework: Indicator Definitions and Specifications [cited by Feb 12, 2019]. Available from: https://www.who.int/nmh/ncd-tools/indicators/GMF_Indicator_Definitions_FinalNOV2014.pdf?ua=1.

9. Whelton P.K., Carey R.M., Aronow W.S. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269-324. doi:10.1161/HYP.0000000000000066.

10. Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953-2041. doi:10.1097/HJH.0000000000001940.

11. Kobalava Z.D., Konradi A.O., Nedogoda S.V. et al. Russian Society of Cardiology position paper on 2018 Guidelines of the European Society of Cardiology/European Society of Arterial Hypertension for the management of arterial hypertension. Russian Journal of Cardiology. 2018;(12):131-42 (In Russ.). doi:10.15829/1560-4071-2018-12-131-142.

12. Whelton P.K., Williams B. The 2018 European Society of Cardiology/European Society of Hypertension and 2017 American College of Cardiology/American Heart Association Blood Pressure Guidelines: more similar than different. JAMA. 2018;320(17):1749-50. doi:10.1001/jama.2018. 16755.

13. Bakris G., Sorrentino M. Perspective on the new blood-pressure guidelines. Eur Heart J. 2018;39(33):3008-9. doi:10.1093/eurheartj/ehy280

14. Goff D.C. Jr, Lloyd-Jones D.M., Bennett G. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S49-73. doi:10.1161/01.cir.0000437741.48606.98.

15. Blood Pressure Lowering Treatment Trialists’ Collaboration. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet. 2014;384(9943):591-8. doi:10.1016/S0140-6736(14)61212-5.

16. Lüscher T.F. What is a normal blood pressure? Eur Heart J. 2018;39(24):2233-40. doi:10.1093/eurheartj/ehy330.

17. Thomopoulos C., Parati G., Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels--overview and metaanalyses of randomized trials. J Hypertens. 2014;32(12):2296-304. doi:10.1097/HJH.0000000000000379.

18. Brunström M., Carlberg В. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Intern Med. 2018;178(1):28-36. doi:10.1001/jamainternmed.2017.6015.

19. Sundström J., Arima H., Jackson R. et al. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med. 2015;162(3):184-91. doi:10.7326/M14- 0773.

20. Julius S., Nesbitt S.D., Egan B.M. et al. Feasibility of treating prehypertension with an angiotensinreceptor blocker. N Engl J Med. 2006;354(16):1685-97. doi:10.1056/NEJMoa060838.

21. Lüders S., Schrader J., Berger J. et al. The PHARAO study: prevention of hypertension with the angiotensin-converting enzyme inhibitor ramipril in patients with high-normal blood pressure: a prospective, randomized, controlled prevention trial of the German Hypertension League. J Hypertens. 2008;26(7):1487-96. doi:10.1097/HJH.0b013e3282ff8864.

22. Fuchs S., Poli-de-Figueiredo C., Figueiredo Neto J. et al. Effectiveness of Chlorthalidone Plus Amiloride for the Prevention of Hypertension: The PREVER-Prevention Randomized Clinical Trial. J Am Heart Assoc. 2016;5:e004248. doi:10.1161/JAHA.116.004248.

23. Wald D.S., Law M., Morris J.K. et al. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med. 2009;122(3):290-300. doi:10.1016/j.amjmed.2008.09.038.

24. MacDonald T.M., Williams B., Webb D.J. et al. Combination therapy is superior to sequential monotherapy for the initial treatment of hypertension: a double-blind randomized controlled trial. J Am Heart Assoc. 2017;6(11):pii: e006986. doi:10.1161/JAHA.117.006986.

25. Gupta A.K., Arshad S., Poulter N.R. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension. 2010;55(2):399-407. doi:10.1161/HYPERTENSIONAHA.109.139816.

26. Xu W., Goldberg S.I., Shubina M., Turchin A. Optimal systolic blood pressure target, time to intensification, and time to follow-up in treatment of hypertension: population based retrospective cohort study. BMJ. 2015;350:h158. doi:10.1136/bmj.h158.

27. Egan B.M., Bandyopadhyay D., Shaftman S.R. et al. Initial monotherapy and combination therapy and hypertension control the first year. Hypertension. 2012;59(6):1124-31. doi:10.1161/HYPERTENSIONAHA.112.194167.

28. Jung O., Gechter J.L., Wunder C. et al. Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens. 2013;31(4):766-74. doi:10.1097/HJH.0b013e32835e2286.

29. Conn V.S., Ruppar T.M., Chase J.A. et al. Interventions to improve medication adherence in hypertensive patients: systematic review and meta-analysis. Curr Hypertens Rep. 2015;17(12):94. doi:10.1007/s11906-015-0606-5.

30. Corrao G., Parodi A., Zambon A. et al. Reduced discontinuation of antihypertensive treatment by two-drug combination as first step. Evidence from daily life practice. J Hypertens. 2010;28(7):1584- 90. doi:10.1097/HJH.0b013e328339f9fa.

31. Thomopoulos C., Parati G., Zanchetti A. Effects of blood-pressure-lowering treatment in hypertension: 9. Discontinuations for adverse events attributed to different classes of antihypertensive drugs: metaanalyses of randomized trials. J Hypertens. 2016;34(10):1921-32. doi:10.1097/HJH.0000000000001052.

32. Lonn E.M., Bosch J., López-Jaramillo P. et al. Blood-Pressure Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N Engl J Med. 2016;374(21):2009-20. doi:10.1056/NEJMoa1600175.

33. Thomopoulos C., Parati G., Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J Hypertens. 2014;32(12):2285-95. doi:10.1097/HJH.0000000000000378.

34. Thomopoulos C., Parati G., Zanchetti A. Effects of blood pressure-lowering treatment. 6. Prevention of heart failure and new-onset heart failure – meta-analyses of randomized trials. J Hypertens. 2016;34(3):373-84. doi:10.1097/HJH.0000000000000848.

35. Thomopoulos C., Parati G., Zanchetti A. Effects of blood pressure-lowering on outcome incidence in hypertension: 5. Head-to-head comparisons of various classes of antihypertensive drugs – overview and meta-analyses. J Hypertens. 2015;33(7):1321-41. doi:10.1097/HJH.0000000000000614.

36. Böhm M., Schumacher H., Teo K.K. et al. Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet. 2017;389(10085):2226-37. doi:10.1016/S0140-6736(17)30754-7.

37. Kjeldsen S.E., Berge E., Bangalore S. et al. No evidence for a J-shaped curve in treated hypertensive patients with increased cardiovascular risk: The VALUE trial. Blood Press. 2016;25(2):83-92. doi:10.3109/08037051.2015.1106750.

38. Mancia G., Kjeldsen S.E., Zappe D.H. et al. Cardiovascular outcomes at different on-treatment blood pressures in the hypertensive patients of the VALUE trial. Eur Heart J. 2016;37(12):955-64. doi:10.1093/eurheartj/ehv633.

39. Bundy J.D., Li C., Stuchlik P. et al. Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and Mortality: A Systematic Review and Network Meta-analysis. JAMA Cardiol. 2017;2(7):775-81. doi:10.1001/jamacardio.2017.1421.

40. Xie X., Atkins E., Lv J. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435-43. doi:10.1016/S0140-6736(15)00805-3.

41. Bangalore S., Toklu B., Gianos E. et al. Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials. Am J Med. 2017;130(6):707-19.e8. doi:10.1016/j.amjmed.2017.01.004.

42. Verdecchia P., Angeli F., Gentile G., Reboldi G. More versus less intensive blood pressure-lowering strategy: cumulative evidence and trial sequential analysis. Hypertension. 2016;68(3):642-53. doi:10.1161/HYPERTENSIONAHA.116.07608.

43. Thomopoulos C., Parati G., Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. J Hypertens. 2016;34(4):613-22. doi:10.1097/HJH.0000000000000881.

44. Ettehad D., Emdin C.A., Kiran A. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957-67. doi:10.1016/S0140-6736(15)01225-8.

45. SPRINT Research Group, Wright J.T. Jr, Williamson J..D, Whelton P.K. et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103-16. doi:10.1056/NEJMoa1511939.

46. Williamson J.D., Supiano M.A., Applegate W.B. et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: a randomized clinical trial. JAMA. 2016;315(24):2673-82. doi:10.1001/jama.2016.7050

47. Odden M.C., Peralta C.A., Berlowitz D.R. et al. Effect of intensive blood pressure control on gait speed and mobility limitation in adults 75 years or older: a randomized clinical trial. JAMA Intern Med. 2017;177(4):500-7. doi:10.1001/jamainternmed.2016.9104.

48. Johnson K.C., Whelton P.K., Cushman W.C. et al. Blood pressure measurement in SPRINT (Systolic Blood Pressure Intervention Trial). Hypertension. 2018;71(5):848-57. doi:10.1161/HYPERTENSIONAHA.117.10479.

49. Kjeldsen S.E., Lund-Johansen P., Nilsson P.M., Mancia G. Unattended blood pressure measurements in the Systolic Blood Pressure Intervention trial: implications for entry and achieved blood pressure values compared with other trials. Hypertension. 2016;67:808-12. doi:10.1161/HYPERTENSION - AHA.116.07257.

50. Kjeldsen S.E., Mancia G. Unobserved automated office blood pressure measurement in the Systolic Blood Pressure Intervention Trial (SPRINT): systolic blood pressure treatment target remains below 140 mmHg. Eur Heart J Cardiovasc Pharmacother. 2016;2(2):79-80. doi:10.1093/ehjcvp/pvw002.

51. Gorbunov V.M. Problems of Evaluating Blood Pressure Measurement in Modern Clinical Trials (the case of SPRINT Study Results). Rational Pharmacotherapy in Cardiology. 2018;14(1):122-30. (In Russ.) doi:10.20996/1819-6446-2018-14-1-122-130.

52. Vidal-Petiot E., Elbez Y., Lüscher T.F. et al. The 2018 ESC-ESH guidelines for the management of arterial hypertension leave clinicians facing a dilemma in half of the patients. Eur Heart J. 2018;39(45):4040-1. doi:10.1093/eurheartj/ehy495.

53. Thomopoulos C., Parati G., Zanchetti A. Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality: 13 - benefits and adverse events in older and younger patients with hypertension: overview, meta-analyses and meta-regression analyses of randomized trials. J Hypertens. 2018;36(8):1622-36. doi:10.1097/HJH.0000000000001787.

54. Bavishi C., Bangalore S., Messerli F.H. Outcomes of intensive blood pressure lowering in older hypertensive patients. J Am Coll Cardiol. 2017;69(5):486-93. doi:10.1016/j.jacc.2016.10.077.

55. Stamler J., Stamler R., Neaton J.D. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med. 1993;153(5):598-615.

56. Guo X., Zhang X, Guo L. et al. Association between pre-hypertension and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Curr Hypertens Rep. 2013;15(6):703- 16. doi:10.1007/s11906-013-0403-y.

57. Huang Y., Cai X., Zhang J. et al. Prehypertension and Incidence of ESRD: a systematic review and meta-analysis. Am J Kidney Dis. 2014;63(1):76-83. doi:10.1053/j.ajkd.2013.07.024.

58. Lee M., Saver J.L., Chang B. et al. Presence of baseline prehypertension and risk of incident stroke: a meta-analysis. Neurology. 2011;77(14):1330-7. doi:10.1212/WNL.0b013e3182315234.

59. Shen L., Ma H., Xiang M.X., Wang J.A. Meta-analysis of cohort studies of baseline prehypertension and risk of coronary heart disease. Am J Cardiol. 2013;112(2):266-71. doi:10.1016/j.amjcard.2013.03.023.

60. Böhm M., Schumacher H., Teo K.K. et al. Achieved diastolic blood pressure and pulse pressure at target systolic blood pressure (120-140 mmHg) and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Eur Heart J. 2018;39(33):3105-14. doi:10.1093/eurheartj/ehy287.

61. Beddhu S., Rocco M.V., Toto R. et al. Effects of Intensive Systolic Blood Pressure Control on Kidney and Cardiovascular Outcomes in Persons Without Kidney Disease: A Secondary Analysis of a Randomized Trial. Ann Intern Med. 2017;167(6):375-83. doi:10.7326/M16-2966.

62. Cheung A.K., Rahman M., Reboussin D.M. et al. Effects of Intensive BP Control in CKD. J Am Soc Nephrol. 2017;28(9):2812-23. doi:10.1681/ASN.2017020148.


For citation:


Kobalava Z.D., Troitskaya E.A., Kolesnik E.L. New Guidelines on Management of Arterial Hypertension: Key Similarities and Differences. Rational Pharmacotherapy in Cardiology. 2019;15(1):105-114. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-1-105-114

Views: 187


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)