Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Atherosclerosis and Osteoporosis. Common Targets for the Effects of Cardiovascular and Anti-osteoporotic Drugs (Part I). The Effect of Cardiovascular Drugs on Bone Strength

https://doi.org/10.20996/1819-6446-2019-15-1-69-76

Full Text:

Abstract

Daily use of antihypertensive and lipid-lowering drugs in clinical practice dictates the need for knowledge of their pleiotropic effects. The article presents the results of studies of the effect of cardiovascular drugs, such as statins, beta-blockers, ACE inhibitors, diuretics, calcium antagonists and nitrates on bone mineral density and fractures associated with osteoporosis. The mechanisms of action of drugs on bone mass, markers of bone metabolism, the frequency of fractures in osteoporosis are discussed. Most studies show that the use of cardiac drugs along with a positive effect on the vascular wall, slow bone resorption and increase bone mass. Knowledge of the additional effect on bone metabolism of drugs used in cardiovascular diseases allows to choose an adequate therapy and improve the prognosis of both diseases.

About the Authors

I. A. Skripnikova
National Medical Research Center for Preventive Medicine
Russian Federation

MD, PhD., Head of Osteoporosis Prevention Department,

Petroverigsky per. 10, Moscow, 101990



N. A. Alikhanova
National Medical Research Center for Preventive Medicine
Russian Federation

PhD, Junior Researcher, Osteoporosis Prevention Department,

Petroverigsky per. 10, Moscow, 101990



M. A. Kolchinа
National Medical Research Center for Preventive Medicine
Russian Federation

MD, Doctor, Advisory Department,

Petroverigsky per. 10, Moscow, 101990



M. A. Myagkova
National Medical Research Center for Preventive Medicine
Russian Federation

Researcher, Osteoporosis Prevention Department, 

Petroverigsky per. 10, Moscow, 101990



O. V. Kosmatova
National Medical Research Center for Preventive Medicine
Russian Federation

MD, PhD, Senior Researcher, Osteoporosis Prevention Department, 

Petroverigsky per. 10, Moscow, 101990



References

1. Dennison T.M., Cooper C. Osteoporosis in 2010: building bones and (safely) preventing breaks. Nat Rev Rheumatol. 2011;7(1):80-2. doi:10.1038/nrrheum.2010.227.

2. Crepaldi G., Maggi S. Epidemiologic link between osteoporosis and cardiovascular disease. J Endocrinol Invest. 2009;32(4):2-5.

3. Pfister R., Mishels G., Sharp S.J. et al. Low bone mineral density predicts incidents heart failure in man and women: the EPIC (European Prospective Investigation Into Cancer and Nutrition) - Norfolk Prospective Study. JACC: Heart failure. 2014:2(4):380-9. doi:10.1016/j.jchf.2014.03.010.

4. Veronese N., Stubbs B., Crepaldi G. et al. Relationship between low bone mineral density and fractures with incidence cardiovascular desease: A systematic review and meta-analysis. J Bone Miner Res. 2017;32(5):1126-35. doi.org/10.1002/jbmr.3089.

5. den Uyl D., Nurmohamed M.T., Tuyl van L.H. et. al. (Sub)clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis. Arthritis Res Ther. 2011;13:R5. doi:10.1186/ar3224.

6. Hofbauer L.C, Brueck C.C, Shanahan C.M., et al. Vascular calcification and osteoporosis – from clinical observation towards molecular understanding. Osteoporos Int. 2007;18(3):251-9. doi:10.1007/s00198-006-0282-z.

7. Liu J., Zhu L.P., Yang X.L. et al. HMG-CoA reductase inhibitors (statins) and bone mineral density: a meta-analysis. Bone. 2013;54(1):151-6. doi:10.1016/j.bone.2013.01.044.

8. Dai L., Xu M., Wu H. et al. The functional mechanism of simvastatin in experimental osteoporosis. Journal of Bone and Mineral Metabolism. 2016;34:23-32. doi:10.1007/s00774-014-0638-y.

9. Wong S.Y., Lynn H., Kwok T. et al. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone. 2014;34(4):584-88. doi:10.1016/j.bone.2005.09.011.

10. Mundi G., Garret S., Harris S. et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 2009;286:1946-49. doi:10.1126/science.286.5446.1946.

11. Stark W., Blaskovich M., Johnson B. et al. Inhibiting geranylgeranylation blocks growth and promotes apoptosis in pulmonary vascular smooth muscle cells. American journal of physiology 1998;275: 55-63.

12. Vickers S., Duncan C.A., Chen I.W. et al. Metabolic disposition studies on simvastatin, a cholesterollowering prodrug. Drug Metab Dispos. 2000;18:138-45.

13. LaCroix A.Z., Cauley J., LaCroix A.Z. et al. Statin use, clinical fracture, and bone density in postmenopausal women: results from the Women's Health Initiative Observational Study. Ann Intern Med. 2003;139(2):97-104. doi:10.7326/0003-4819-139-2-200307150-00009.

14. Chan M.H., Mak T.W., Chiu R.W. et al. Simvastatin increases serum osteocalcin concentration in patients treated for hypercholesterolemia. J Clin Endocrinol Metab. 2001; 86:4556-59. doi:10.1210/jcem.86.9.8001.

15. Edwards C.J., Hart D.J., Spector T.D. Oral statins and increased bone mineral density in postmenopausal women. Lancet. 2000;355:2218-19. doi:10.1016/S0140-6736(00)02408-9.

16. Chung Y.S., Lee M.D., Lee S.K. et al. HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab. 2000;85:1137-42. doi:10.1210/jcem.85.3.6476.

17. Hatzigeorgiou C., Jackson J.L. Hydroxymethylglutaryl-coenzyme-A reductase inhibitors and osteoporosis: a meta-analysis. Osteoporos Int. 2005;16:990-98. doi:10.1007/s00198-004-1793-0.

18. Rejnmark L., Vestergaard P., Mosekilde L. Statin but not non-statin lipid-lowering drugs decrease fracture risk: A nation-wide case-control study. Calcif Tissue Int. 2006;79:27-36. doi:10.2147/CLEP.S145311.

19. Wang P.S., Solomon D.H., Mogun H. et al. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA. 2010;283:3211-16. doi:10.1001/jama.283.24.3211.

20. Gong Ja., Wang Z., Lee Yi. et al. Effect of statins on bone mineral density and fracture rick: A PRISMAcompliant systematic review and meta-analysis. Medicine. 2016;95(22):e3042. doi:10.1097/MD.0000000000003042.

21. Wang X.Y., Masilamani S., Nielsen J. et al. The renal thiazide-sensitive Na-Cl cotransporter as mediator of the aldosterone-escape phenomenon. J Clin Invest. 2011;108:215-22. doi:10.1172/JCI10366.

22. Dvorak M.M., De Joussineau C., Carter D.H. et al. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone. J Am Soc Nephrol. 2007;18:2509-16. doi:10.1681/ASN.2007030348.

23. Rejnmark L., Vestergaard P., Ped A.R. et al. Dose-effect relations of loop - and thiazide-diuretics on calcium homeostasis: a randomized, double blinded Latin-square multiple cross-over study in postmenopausal osteopenic women. Eur J Clin Invest. 2003;33:41-50. doi:10.1046/j.1365-2362.2003.01103.x.

24. Sigurdsson G., Franzson L. Increased bone mineral density in a population-based group of 70-yearold women on thiazide diuretics, independent of parathyroid hormone levels. J Intern Med. 2001;250:51-6. doi:10.1046/j.1365-2796.2001.00850.x.

25. Aung K., Htay T. Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst. Rev. 2011;10:CD005185. doi:10.1002/14651858.CD005185.

26. Barzilay J.I., Davis B.R., Pressel S.L. et al. The impact of antihypertensive medication on Bone Mineral density and fracture risk. Current Cardiology Report. 2017;19(76):176-84. doi:10.1007/s11886-017-0888-0.

27. Rejnmark L., Vestergaard P., Heickendorff L. et al. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21:163-70. doi:10.1359/JBMR.051003.

28. Solomon D.H., Mogun H., Garneau K. et al. Risk of fractures in older adults using antihypertensive medications. J Bone Miner Res. 2011;26:1561-7. doi:10.1002/jbmr.356.

29. Bonnet N., Gadois C., McCloskey E. et al. Protective effect of beta-blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone. 2008;40:1209- 16. doi:10.1016/j.bone.2007.01.006.

30. Weins M., Etminan M., Gill S.S. et al. Effects of antihypertensive drug treatments on fractures outcomes: a meta-analysis of observational studies. Journal of International Studies. 2006;260:350- 62. doi:10.1111/j.1365-2796.2006.01695.x.

31. Rejnmark L., Vestergaard P., Kassem M. et.al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int. 2004;75:365-72. doi:10.1007/s00223-004-0222-x.

32. Pasco J.A., Henry M.J., Nicholson G.C. et.al. B-blockers reduce bone resorption marker in early postmenopausal women. Ann Human Biol. 2005;32:738-45. doi:10.1080/03014460500292168.

33. Skripnikova I.A., Sobchenko K.E., Kosmatova O.V., Nebieridze D.V. Effect of cardiovascular drugs on bone health and the possibility of their use for the prevention of osteoporosis. ures, osteoporosis. Rational Pharmacotherapy in Cardiology. 2012;8(4):587-94 (In Russ). doi:10.20996/1819-6446-2012-8-4-587-594.

34. Yang S., Nguyen N.D., Center J.R. et al. Association between beta-blocker use and fracture risk the Dubbo Osteoporosis Epidemiology Study. Bone. 2011;48(3):451-55. doi:10.1016/j.bone.2010. 10.170.

35. Turker S., Karatosun V., Gunai I. Beta-blockers increase bone mineral density. Clin Orthop. 2006;443:73-4. doi:10.1097/01.blo.0000200242.52802.6d.

36. Pasco J.A., Henry M.J., Sanders K.M. et al. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res. 2004; 19: 19-24. doi:1359/JBMR.0301214.

37. Schlienger R.G., Kraenzlin M.E., Jick S.S. et al. Use of beta-blockers and risk of fractures. JAMA. 2004;292:1326-32. doi:10.1001/jama.292.11.1326.

38. de Vries F., Souverein P.C., Leufkens H.G. et al. Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and the Netherlands. Calcif Tissue Int. 2007;80:69-75. doi:10.1007/s00223-006-0213-1.

39. Rejnmark L., Vestergaard P., Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calciumchannel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens. 2006;24:581-89. doi:10.1097/01.hjh.0000203845.26690.cb.

40. Reid I.R., Gamble G.D., Grey A.B. et al. Beta-blockers use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res. 2005;20:613-18. doi:10.1359/JBMR.041202.

41. Toker A., Gulcan E., Toker S. et al. Nebivolol might be beneficial in osteoporosis treatment: a hypothesis. TJPR. 2009; (2):181-86. doi:10.4314/tjpr.v8i2.44528.

42. Tepojan I.L., Nebieridze D.V., Skripnikova I.A. et al. Assessment of pleiotropic effects of nebivolol: influence on microcirculation parameters and bone tissue in postmenopausal women with mild arterial hypertension. Cardiovascular Therapy and Prevention. 2016;15(2):26-31 (In Russ.). doi:10.15829/1728-8800-2016-2-26-31.

43. Broshus' V.V. Nitric oxide as a regulator of the protective and homeostatic reactions of the body. Ukrainian Rheumatology Journal. 2003;4:3-11 (In Russ.)

44. Lavasseur R., Marcelli C., Savatier J.p. et al. Beta-blockers use, BMD, and fractures risk in older women: results from the Epidemiologie de L’Osteoporose Prospective Study. J Am Geriatr Soc 2005;53:550-52. doi:10.1111/j.1532-5415.2005.53178_7.x.

45. Reid I.R., Gamble G.D., Grey A.B et al. Beta-blockers use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Resю 2005;20:613-18. doi:10.1359/JBMR.041202.

46. Hatton R., Stimpel M., Chambers T.J. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J Endocrinol. 2007;152:5-10. doi:10.1677/joe. 0.1520005.

47. Nakagami H., Morishita R. Hormones and osteoporosis update. Effect of angiotensin II on bone metabolism. Clin Calcium. 2009;19:997-1002.

48. Bleicher K., Cumming R.G., Naganathan V. Predictors of the rate of BMD loss in older men: findings from the CHAMP study. Osteoporos Int. 2013;24(7):1951-63. doi:10.1007/s00198- 012-2226-0.

49. Zaidi M., MacIntyre I., Datta H. Intracellular calcium in the control of osteoclast function. II. Paradoxical elevation of cytosolic free calcium by verapamil. Biochemical and Biophysical Research Communications. 1990;167(2):807-12. doi:10.1016/0006-291X (90)92097.

50. Zacharieva S., Shigarminova R., Nachev E. et al. Effect of amlodipine and hormone replacement ther - apy on blood pressure and bone markers in menopause. Methods Find Exp Clin Pharmacol. 2003;25:209-13. doi:10.1358/mf.2003.25.3.769642.

51. Ağaçayak K.S., Güven S., Koparal M. et al. Long-term effects of antihypertensive medications on bone mineral density in men older than 55 years. Clin Interv Aging. 2014;9:509-13. doi:10.2147/CIA.S60669.

52. Solomon D.H., Mogun H., Garneau K. et al. Risk of fractures in older adults using antihypertensive medications. J Bone Miner Res. 2011;26:1561-67. doi:10.1002/jbmr.356.

53. Ruths S., Bakken M.S., Rantoff A.H. et al. Risk of hip fracture among older people using antihypertensivedrugs: a nationwide cohort study. BMC Geriatrics. 2015.15:153-62. doi:10.1186/s12877- 015-0154-5.

54. Ralston S.H., Ho L., Helfrich M.H. et al. Nitric oxide: A cytokine-induced regulator of bone resorption. J Bone Miner Res. 1995;10:1040-9. doi:10.1002/jbmr.5650100708.

55. Jamal S.A., Browner W.S., Bauer D.C., Cummings S.R. Intermittent use of nitrates increases bone mineral density: the study of osteoporotic fractures. J Bone Miner Res. 1998;13(11):1755-9. doi:10.1359/jbmr.1998.13.11.1755.

56. Rejnmark L., Vestergaard P., Mosekilde L. Decreased fracture risk in users of organic nitrates: a nationwide case-control study. J Bone Miner Res. 2006;21:1811-7. doi:10.1359/jbmr.060804.

57. Jamal S.A., Cummings S.R., Hawker G.A. Isosorbide mononitrate increases bone formation and decreases bone resorption in postmenopausal women: a randomized trial. J Bone Miner Res. 2004;19:1512-7. doi:10.1359/JBMR.040716.

58. Golchin N., Hohensee C., LaCroix A. Nitrate Medications, Fractures, and Change in Bone Mineral Density in Postmenopausal Women: Results from the Women's Health Initiative. J Bone Miner Res. 2016;31(9):1760-6. doi:10.1002/jbmr.2838.

59. Rejnmark L., Vestergaard P., Mosekilde L. Fracture risk in patients treated with amiodarone or digoxin for cardiac arrhythmias: a nation-wide case-control study. Osteoporosis Int. 2009;18:409-17. doi:10.1007/s00198-006-0250-7.

60. Gandavati A., Hajjar I., Quach L. et al. Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: the maintenance of balance, independent living, intellect and zest in the Elderly of Boston Study. J Am Geriatr Soc. 2011;59:383-9. doi:10.1111/j.1532- 5415.2011.03317.x.

61. Colon-Emeric S.C., Lee R. Dodging Complexity: cardiovascular medications and fractures. JAMA Intern Med. 2017;177(1):77-8. doi:10.1001/jamainternmed.2016.7040.

62. But D.A., Mamdani M., Austin P.C. et al. The risk of falls on initiation of antihypertensive drugs in the elderly. Osteoporosis Int. 2013;24:2649-57. doi:10.1007/s00198-013-2369-7.

63. But D.A., Mamdani M., Austin P.C. et al. The risk of hip fractures after initiating antihypertensive drugs in the elderly. Arch Intern Med. 2012;172:1739-44. doi:10.1001/2013.jamainternmed. 469.

64. Woolcott J.C., Richardson K.J., Wens M.O. et al. Meta-analysis of the impact of 9 medication classes on falls in elderly persons. Arch Intern Med. 2009;169:1952-60. doi:10.1001/archinternmed.2009.357.


For citation:


Skripnikova I.A., Alikhanova N.A., Kolchinа M.A., Myagkova M.A., Kosmatova O.V. Atherosclerosis and Osteoporosis. Common Targets for the Effects of Cardiovascular and Anti-osteoporotic Drugs (Part I). The Effect of Cardiovascular Drugs on Bone Strength. Rational Pharmacotherapy in Cardiology. 2019;15(1):69-76. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-1-69-76

Views: 175


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)