Preview

Rational Pharmacotherapy in Cardiology

Advanced search

THIOL ISOMERASES – A POSSIBLE TARGET FOR THROMBOSIS CONTROL

https://doi.org/10.20996/1819-6446-2017-13-6-835-840

Full Text:

Abstract

While there are an increasing number of antithrombotic agents with demonstrated clinical efficacy, thrombosis remains the leading cause of mortality in developed countries. Therefore, there is a need further development of therapies targeting alternative components of the blood clotting mechanism, based on new knowledge about the mechanisms of thrombus formation. Recently, among several unexpected findings of new methods and approaches to the study of these mechanisms it was discovered that protein disulfide isomerase (PDI) serves an essential role in the processes of thrombus formation. PDI is secreted by platelets and endothelial cells following activation and localizes to the membrane surface. Given the role of PDI in regulating both platelet aggregation and fibrin generation in vivo, the possibility of using PDI as an antithrombotic target is discussed. While most antithrombotic target either platelet or coagulation activation, PDI inhibitors have the potential to prevent thrombosis in conditions with pathologic activation of both pathways as implicated in complex thrombotic disorders such as myocardial infarction and cancer associated thrombosis. This review considers what is known about the role of PDI in thrombus formation, main targets and mechanisms of action, as well as PDI inhibitors, as candidates for a new class of antithrombotic agents with both antiplatelet and anticoagulant properties to prevent thrombosis in humans.

About the Authors

I. V. Gribkova
Clinical Trials and Healthcare Technology Assessment Centre, Moscow Department of Healthcare
Russian Federation

Irina V. Gribkova – PhD (in Biology), Leading Researcher, Scientific and Clinical Department 

Minskaya ul. 12-2, Moscow, 121096



M. V. Davydovskaya
Clinical Trials and Healthcare Technology Assessment Centre, Moscow Department of Healthcare; Pirogov Russian National Research Medical University
Russian Federation

Marya V. Davydovskaya – MD, PhD, Deputy Director for Scientific Work, Clinical Trials and Healthcare Technology Assessment Centre; Professor, Chair of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University 

Ostrovitianova ul. 1, Moscow, 117997



References

1. Panchenko E.P. Anticoagulant therapy in cardiology: past, present, future. Kardiologiia. 2010;7:4-7. (In Russ.) [Панченко Е.П. Антикоагулянтная терапия в кардиологии: вчера, сегодня завтра. Кардиология. 2010;7:4-7.

2. Furie B., Furie B.C. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49. doi: 10.1056/NEJMra0801082

3. Falati S., Gross P., Merrill-Skoloff G., et al. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med. 2002;8:1175–81. doi:10.1038/nm782

4. Cho J., Furie B.C., Coughlin S.R., et al. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J Clin Invest. 2008;118:1123–31. doi: 10.1172/JCI34134

5. Jasuja R., Furie B., Furie B.C. Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood. 2010;116:4665–74. doi: 10.1182/blood-201004-278184

6. Flaumenhaft R. Protein disulfide isomerase as an antithrombotic target. Trends Cardiovasc Med. 2013;23:264-8. doi: 10.1016/j.tcm.2013.03.001

7. Jasuja R., Passam F.H., Kennedy D.R., et al. Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J Clin Invest. 2012;122:2104-13. doi: 10.1172/JCI61228

8. Kim K., Hahm E., Li J., et al. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood. 2013;122:1052-61. doi: 10.1182/blood-2013-03-492504

9. Holbrook L.M., Sasikumar P., Stanley R.G., et al. The platelet-surface thiol isomerase enzyme ERp57 modulates platelet function. J Thromb Haemost. 2012;10:278-88. doi: 10.1111/j.15387836.2011.04593.x.

10. Wang L., Wu Y., Zhou J., et al. Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the alphaIIbbeta3 integrin. Blood. 2013;122:3642-50. doi: 10.1182/blood-2013-06-506691

11. Wu Y., Ahmad S.S., Zhou J., et al. The disulfide isomerase ERp57 mediates platelet aggregation, hemostasis, and thrombosis. Blood. 2012;119:1737-46. doi: 10.1182/blood-2011-06-360685

12. Zhou J., Wu Y., Wang L., et al. The disulfide isomerase ERp57 is required for fibrin deposition in vivo. J Thromb Haemost. 2014;12:1890-7. doi: 10.1111/jth.12709

13. Passam F.H., Lin L., Gopal S., et al. Both plateletand endothelial cell-derived ERp5 support thrombus formation in a laser-induced mouse model of thrombosis. Blood. 2015;125:2276-85. doi: 10.1182/blood-2013-12-547208

14. Cho J., Kennedy D.R., Lin L., et al. Protein disulfide isomerase capture during thrombus formation in vivo depends on the presence of beta3 integrins. Blood. 2012;120:647-655. doi: 10.1182/blood2011-08-372532.

15. Flaumenhaft R., Furie B., Zwicker J.I. Therapeutic implications of protein disulfide isomerase inhibition in thrombotic disease. Arterioscler Thromb Vasc Biol. 2015;35:16-23. doi:10.1161/ATVBAHA.114.303410

16. Furie B., Flaumenhaft R. Thiol Isomerases in Thrombus Formation. Circulation Research. 2014;114:1162-73. doi:10.1161/CIRCRESAHA.114.301808

17. Schulman S., Bendapudi P., Sharda A., et al. Extracellular Thiol Isomerases and Their Role in Thrombus Formation. Antioxidants & Redox Signaling. 2016;24:1-15. doi: 10.1089/ars.2015.6530

18. De Lorenzo F., Goldberger R.F., Steers E., et al. Purification and properties of an enzyme from beef liver which catalyzes sulfhydryl-disulfide interchange in proteins. J Biol Chem. 1966; 241:1562-7.

19. Goldberger R.F., Epstein C.J., Anfinsen C.B. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J BiolChem. 1963; 238:628-35.

20. Appenzeller-Herzog C., Ellgaard L. The human PDI family: versatility packed into a single fold. Biochim Biophys Acta. 2008;1783:535-48. doi:10.1016/j.bbamcr.2007.11.010

21. Hatahet F., Ruddock L.W. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal. 2009;11:2807-50. doi: 10.1089/ARS.2009.2466

22. Thon J.N., Peters C.G., Machlus K.R., et al. T granules in human platelets function in TLR9 organization and signaling. J Cell Biol. 2012;198:561-74. doi: 10.1083/jcb.201111136

23. Chen K., Detwiler T.C., Essex D.W. Characterization of protein disulphide isomerase released from activated platelets. Br J Haematol. 1995; 90:425-31.

24. Sliskovic I., Raturi A., Mutus B. Characterization of the s-denitrosation activity of protein disulfide isomerase. J Biol Chem. 2005;280:8733-8741. doi:10.1074/jbc.M408080200

25. Zai A., Rudd M.A., Scribner A.W., et al. Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest. 1999;103:393-9. doi: 10.1172/JCI4890

26. Chen K., Lin Y., Detwiler T.C. Protein disulfide isomerase activity is released by activated platelets. Blood. 1992;79:2226-8.

27. Jordan P.A., Stevens J.M., Hubbard G.P., et al. A role for the thiol isomerase protein erp5 in platelet function. Blood. 2005;105:1500-7. doi: 10.1182/blood-2004-02-0608

28. Lahav J., Jurk K., Hess O., et al. Sustained integrin ligation involves extracellular free sulfhydryls and enzymatically catalyzed disulfide exchange. Blood. 2002;100:2472-8. doi: 10.1182/blood-200112-0339

29. Reinhardt C., von Bruhl M.L., Manukyan D., et al. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. The Journal of Clinical Investigation. 2008;118:1110-22. doi: 10.1172/JCI32376

30. Chen V.M., Ahamed J., Versteeg H.H., et al. Evidence for Activation of Tissue Factor by an Allosteric Disulfide Bond. Biochemistry. 2006;45:12020-8. doi:10.1021/bi061271a

31. Walsh J.D., Geczy C.L. Discordant expression of tissue factor antigen and procoagulant activity on human monocytes activated with lps and low dose cycloheximide. Thromb Haemost. 1991;66:5528.

32. Le D.T., Rapaport S.I., Rao L.V. Relations between factor viia binding and expression of factor viia/tissue factor catalytic activity on cell surfaces. J Biol Chem. 1992;267:15447-54.

33. Ahamed J., Versteeg H.H., Kerver M., et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl AcadSci USA. 2006;103:13932-7. doi: 10.1073/pnas.0606411103

34. Versteeg H.H., Ruf W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J Biol Chem. 2007;282:25416-24. doi: 10.1074/jbc.M702410200

35. Furlan-Freguia C., Marchese P., Gruber A., et al. P2x7 receptor signaling contributes to tissue factordependent thrombosis in mice. J Clin Invest. 2011;121:2932-44. doi: 10.1172/JCI46129

36. Jurk K., Lahav J., VAN Aken H., et al. Extracellular protein disulfide isomerase regulates feedback activation of platelet thrombin generation via modulation of coagulation factor binding. J Thromb Haemost. 2011;9:2278-90. doi: 10.1111/j.1538-7836.2011.04509.x

37. Maun H.R., Eigenbrot C., Raab H., et al. Disulfide locked variants of factor VIIa with a restricted betastrand conformation have enhanced enzymatic activity. Protein Sci. 2005;14:1171-80. doi: 10.1110/ps.041097505

38. Hessel B., Jornvall H., Thorell L., et al. Structure-function relationships of human factor VIII complex studied by thioredoxin dependent disulfide reduction. Thromb Res. 1984;35:637-51.

39. Higashi S., Matsumoto N., Iwanaga S. Conformation of factor VIIa stabilized by a labile disulfide bond (Cys-310-Cys-329) in the protease domain is essential for interaction with tissue factor. J Biol Chem. 1997; 272:25724-30.

40. Bush-Pelc L.A., Marino F., Chen Z., et al. Important role of the cys-191 cys-220 disulfide bond in thrombin function and allostery. J Biol Chem. 2007;282:27165-70. doi: 10.1074/jbc.M703202200

41. Miller T.N., Sinha D., Baird T.R., et al. A catalytic domain exosite (Cys527-Cys542) in factor XIa mediates binding to a site on activated platelets. Biochemistry 2007; 46: 14450-14460. doi: 10.1021/bi701310x

42. Giannakopoulos B., Gao L., Qi M., et al. Factor XI is a substrate for oxidoreductases: enhanced activation of reduced FXI and its role in antiphospholipid syndrome thrombosis. Autoimmun. 2012;39:121-9. doi: 10.1016/j.jaut.2012.05.005

43. Lahav J., Tvito A., Bagoly Z., et al. Factor XIII improves platelet adhesion to fibrinogen by protein disulfide isomerase-mediated activity. Thromb Res. 2013;131:338-41. doi: 10.1016/j.thromres.2012.12.003

44. Lahav J., Karniel E., Bagoly Z., et al. Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost. 2009; 101: 840-844.

45. Smith C.L., Shah C.M., Kamaludin N., et al. Inhibition of thiol isomerase activity diminishes endothelial activation of plasminogen, but not of protein C. Thromb Res. 2015;135:748-53. doi: 10.1016/j.thromres.2015.01.034

46. Appenzeller-Herzog C., Ellgaard L. The human pdi family: Versatility packed into a single fold. Biochim Biophys Acta. 2008;1783:535-48. doi: 10.1016/j.bbamcr.2007.11.010

47. Hertog M.G., Feskens E.J., Hollman P.C., et al. Dietary antioxidant flavonoids and risk of coronary heart disease: The zutphen elderly study. Lancet. 1993;342:1007-11.

48. McCullough M.L., Peterson J.J., Patel R., et al. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of us adults. Am J ClinNutr. 2012;95:454-64. doi: 10.3945/ajcn.111.016634

49. Huxley R.R., Neil H.A. The relation between dietary flavonol intake and coronary heart disease mortality: A meta-analysis of prospective cohort studies. Eur J ClinNutr. 2003;57:904-8. doi: 10.1038/sj.ejcn.1601624

50. Keli S.O., Hertog M.G., Feskens E.J., et al. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The zutphen study. Arch Intern Med. 1996;156:637-42.

51. Hollman P.C., Geelen A., Kromhout D. Dietary flavonol intake may lower stroke risk in men and women. J Nutr. 2010;140:600-4. doi: 10.3945/jn.109.116632

52. Wright B., Moraes L.A., Kemp C.F., et al. A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. British Journal of Pharmacology. 2010;159:1312-25. doi: 10.1111/j.1476-5381.2009.00632.x

53. Mulvihill E.E., Huff M.W. Antiatherogenic properties of flavonoids: Implications for cardiovascular health. Can J Cardiol. 2010; 26:17A-21A. doi: 10.1016/S0828-282X(10)71056-4.


For citation:


Gribkova I.V., Davydovskaya M.V. THIOL ISOMERASES – A POSSIBLE TARGET FOR THROMBOSIS CONTROL. Rational Pharmacotherapy in Cardiology. 2017;13(6):835-840. (In Russ.) https://doi.org/10.20996/1819-6446-2017-13-6-835-840

Views: 196


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)