Preview

Rational Pharmacotherapy in Cardiology

Advanced search

CHANGE IN CONTENT OF GLYCOPROTEINS ON THE SURFACE OF ENDOTHELIAL CELL CULTURE EA.HY 926 AND INTIMA OF INTERNAL CAROTID ARTERIES UNDER THE INFLUENCE OF MAGNESIUM OROTATE

https://doi.org/10.20996/1819-6446-2017-13-1-88-94

Full Text:

Abstract

Aim. To study changes in the glycoproteins content in the glycocalyx of endothelial cells under the influence of magnesium orotate.

Material and methods. Endotheliocytes of cell culture EA.hy 926 were examined before  and after addition of the magnesium orotate to the culture medium. Intimal endothelium of internal carotid arteries, fragments of which were obtained by sequential execution of bilateral resection of the arteries before  and after course of treatment with magnesium orotate was also investigated. Anthony’ method (1931), designed for the study of glycoproteins in the bacteria capsule and adapted by L.V. Didenko (2013) for eukaryotes was used to detect glycoproteins. The scanning electron microscopy with simultaneous x-ray microanalysis was applied.

Results. Total number of Cu2+-signals per one scanning field in the mapping of samples for Cu2+ as the indirect index of proteoglycan content in EA.hy 926 endothelial cell culture before incubation with magnesium orotate was 6928±124, and after incubation with magnesium orotate – 7592±131. Number of Cu2+-signals on the surface of the internal carotid artery intima before treatment with magnesium orotate was 5015±407, and after treatment – 6100±152 per one scanning field.

Conclusion. A significant increase in the content of glycoproteins on the surface of EA.hy926 endothelial cell culture (+10%) and internal carotid artery intima (+22%) under the influence of magnesium orotate was found.

About the Authors

L. V. Didenko
Gamaleya Federal Research Center for Epidemiology and Microbiology
Russian Federation

Lyubov V. Didenko – MD, PhD, Head of Laboratory.

Gamaleya ul. 18,  Moscow, 123098



E. A. Ulubieva
Russian Medical Academy of Postgraduate Education
Russian Federation

Elena A. Ulubieva – MD, PhD, Associate Professor, Chair of Therapy and Adolescent Medicine.

Gamaleya ul. 18,  Moscow, 123098 



T. G. Borovaya
Gamaleya Federal Research Center for Epidemiology and Microbiology
Russian Federation

Tatiana G. Borovaya – MD, PhD, Professor, Corresponding Member of Russian Academy of Sciences, Chief Researcher of Laboratory.

Gamaleya ul. 18,  Moscow, 123098



A. G. Avtandilov
Russian Medical Academy of Postgraduate Education
Russian Federation

Alexander G. Avtandilov – MD, PhD, Professor, Head of Chair of Therapy and Adolescent Medicine.

Gamaleya ul. 18,  Moscow, 123098 



N. V. Shevlyagina
Gamaleya Federal Research Center for Epidemiology and Microbiology
Russian Federation

Natalia V. Shevlyagina – MD, PhD, Senior Researcher of Laboratory.

Gamaleya ul. 18,  Moscow, 123098



V. G. Zhukhovitsky
Gamaleya Federal Research Center for Epidemiology and Microbiology
Russian Federation

Vladimir G. Zhukhovitsky – MD, PhD, Head of Laboratory.

Gamaleya ul. 18,  Moscow, 123098



O. M. Grinkevich
Gamaleya Federal Research Center for Epidemiology and Microbiology
Russian Federation

Olesya M. Grinkevich – Researcher of Laboratory of Tissue Culture.

Gamaleya ul. 18,  Moscow, 123098



M. V. Mezentseva
Gamaleya Federal Research Center for Epidemiology and Microbiology
Russian Federation

Marina V. Mezentseva PhD, Head of Laboratory of Tissue Culture.

Gamaleya ul. 18,  Moscow, 123098



References

1. Noble M.I., Drake-Holland A.J., Vink H. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM. 2008;101(7):513-8.

2. van den Berg B., Vink H. Glycocalyx perturbation: cause or consequence of damage to the vasculature? Am J Physiol Heart Circ Physiol. 2006;290(6):2174-5.

3. Danielli J.F. Capillary permeability and oedema in the perfused frog. J Physiol. 1940;98(1):109-29.

4. Chambers R., Zweifach B.W. Intercellular Cement and Capillary Permeability. Physiol Rev. 1947;27:436-463.

5. Luft J.H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966;25:1773-83.

6. Weinbaum S., Tarbell J.M., Damiano E.R. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121-67.

7. Satchell S., Anderson K., Mathieson P. Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J Am Soc Nephrol. 2004;15:566-74.

8. Vink H., Duling B.R. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol. 2000; 278(1): 285-289.

9. Firth J.A. Endothelial barriers: from hypothetical pores to membrane proteins. J Anat. 2002;200(6): 541-8.

10. Maksimenko A.V., Turashev A.D. Visualization, composition and structure of endothelial glycocalyx. Atherosclerosis and Dyslipidemia. 2011;1:28-40. (In Russ.) [Максименко А.В., Турашев А.Д. Визуализация, состав и структура эндотелиального гликокаликса. Атеросклероз и Дислипидемии. 2011;1:28-40].

11. Gromova O.A., Torshin I.Y., Sardarian I.S. et al. Prospects for the use of drugs based on orotate magnesium in patients with cardiovascular disease. Effektivnaya Farmakoterapiya. 2013;33:53-62. (In Russ.) [Громова О.А., Торшин И.Ю., Сардарян И.С. и др. Перспективы применения препаратов на основе оротата магния у пациентов с сердечно-сосудистыми заболеваниями. Эффективная Фармакотерапия. 2013;33:53-62].

12. Torshin I., Gromova O. Magnesium: fundamental studies and clinical practice. NY: Nova Biomedical Publishers; 2011.

13. Edgell C.J., McDonald C.C., Graham J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Nall Acad Sci USA. 1983; 80: 3734-3737.

14. Edgell C.J., Curiel D.T., Hu P.C., Marr H.S. Efficient gene transfer to human endothelial cells using DNA complexed to adenovirus particles. Biotechniques. 1998;25:264-8.

15. Bauer J., Margolis M., Schreiner C., et al. In vitro model of angiogenesis using a human endotheliumderived permanent cell line: contributions of induced gene expression G-proteins and inlegans. J Cell Physiol. 1982;153:437-49.

16. Anthony E.E. A note on capsule staining. Science. 1931;73:319-20.

17. Pirs E. Histochemistry. Moscow: Lan’; 1962. Russian (Пирс Э. Гистохимия. М.: Лань; 1962).

18. Avtandilov A.G., Dzeranova K.M., Borovaya T.G., Didenko L.V. Effect of magnesium orotate to connective tissue framework and inotropic cardiac function in patients with mitral valve prolapse. Clinico-morphological study. Rational Pharmacotherapy in Cardiology. 2013;9(4):390-7. (In Russ.). (Автандилов А.Г., Дзеранова К.М., Боровая Т.Г., Диденко Л.В. Влияние оротата магния на соединительнотканный каркас и инотропную функцию сердца у пациентов с пролапсом митрального клапана. Клиникоморфологическое исследование. Рациональная Фармакотерапия в Кардиологии. 2013; 9(4): 390-7].

19. National references on maintaining patients with diseases the brachiocephalic arteries. Angiologiya i Sosudistaya Khirurgiya. 2013;19(2) suppl:2-12. (In Russ.) [Национальные рекомендации по ведению пациентов с заболеваниями брахиоцефальных артерий. Ангиология и Сосудистая Хирургия. 2013;19(2) приложение:2-12].

20. Toroshin I.Y., Gromova O.A. Displaziya of connecting fabric, cell-like biology and molecular mechanisms of influence of a magnesium. Russkiy Meditsinskiy Zhurnal. 2008;(4):263-9. (In Russ.) [Торшин И.Ю., Громова О.А. Дисплазия соединительной ткани, клеточная биология и молекулярные механизмы воздействия магния. Русский Медицинский Журнал. 2008;(4):263-9].

21. Torshin I.Y, Gromova O.A., Fedotov L.E., et al. Hemoinformatsionny orotic acid molecule analysis indicates inflammatory, neuroprotective and cardioprotective properties of the ligand of magnesium. Farmateka. 2013;13:95-104. (In Russ.) [Торшин И.Ю., Громова О.А., Федотова Л.Э. и др. Хемоинформационный анализ молекулы оротовой кислоты указывает на противовоспалительные, нейропротекторные и кардиопротекторные свойства лиганда магния. Фарматека. 2013;13:95-104].

22. Mierch J., Crancharov K., Krause G.J. et al. Biological activity and mode of action of some dihydroorotic acid and derivatives. Biomed Biochim Acta. 1987;46(5):307-15.

23. Yarosh A.K. Magnesium and orotic acid two of the most important components for regulating the functions of the nervous and muscular systems. Mezhdunarodnyy Endokrinologicheskiy Zhurnal. 2010;8(32):64-78. (In Russ.) ([Ярош А.К. Магний и оротовая кислота два из наиболее важных компонентов для регуляции функций нервной и мышечной систем организма. Международный Эндокринологический Журнал. 2010;8(32):64-78].


For citation:


Didenko L.V., Ulubieva E.A., Borovaya T.G., Avtandilov A.G., Shevlyagina N.V., Zhukhovitsky V.G., Grinkevich O.M., Mezentseva M.V. CHANGE IN CONTENT OF GLYCOPROTEINS ON THE SURFACE OF ENDOTHELIAL CELL CULTURE EA.HY 926 AND INTIMA OF INTERNAL CAROTID ARTERIES UNDER THE INFLUENCE OF MAGNESIUM OROTATE. Rational Pharmacotherapy in Cardiology. 2017;13(1):88-94. (In Russ.) https://doi.org/10.20996/1819-6446-2017-13-1-88-94

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)